Cargando…
Developing a Model to Predict Hospital Encounters for Asthma in Asthmatic Patients: Secondary Analysis
BACKGROUND: As a major chronic disease, asthma causes many emergency department (ED) visits and hospitalizations each year. Predictive modeling is a key technology to prospectively identify high-risk asthmatic patients and enroll them in care management for preventive care to reduce future hospital...
Autores principales: | Luo, Gang, He, Shan, Stone, Bryan L, Nkoy, Flory L, Johnson, Michael D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7001050/ https://www.ncbi.nlm.nih.gov/pubmed/31961332 http://dx.doi.org/10.2196/16080 |
Ejemplares similares
-
Automatically Explaining Machine Learning Prediction Results on Asthma Hospital Visits in Patients With Asthma: Secondary Analysis
por: Luo, Gang, et al.
Publicado: (2020) -
Predicting Appropriate Hospital Admission of Emergency Department Patients with Bronchiolitis: Secondary Analysis
por: Luo, Gang, et al.
Publicado: (2019) -
Appropriateness of Hospital Admission for Emergency Department Patients with Bronchiolitis: Secondary Analysis
por: Luo, Gang, et al.
Publicado: (2018) -
A systematic review of predictive models for asthma development in children
por: Luo, Gang, et al.
Publicado: (2015) -
Using Computational Methods to Improve Integrated Disease Management for Asthma and Chronic Obstructive Pulmonary Disease: Protocol for a Secondary Analysis
por: Luo, Gang, et al.
Publicado: (2021)