Cargando…
Mechanical stability study of three techniques used in the fixation of transverse and oblique metaphyseal-diaphyseal junction fractures of the distal humerus in children: a finite element analysis
BACKGROUND: Management of distal humerus metaphyseal-diaphyseal junction (MDJ) region fractures can be very challenging mainly because of the higher location and characteristics of the fracture lines. Loss of reduction is relatively higher in MDJ fractures treated with classical supracondylar humeru...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7001280/ https://www.ncbi.nlm.nih.gov/pubmed/32020882 http://dx.doi.org/10.1186/s13018-020-1564-4 |
Sumario: | BACKGROUND: Management of distal humerus metaphyseal-diaphyseal junction (MDJ) region fractures can be very challenging mainly because of the higher location and characteristics of the fracture lines. Loss of reduction is relatively higher in MDJ fractures treated with classical supracondylar humerus fractures (SHFs) fixation techniques. METHODS: Three different fracture patterns including transverse, medial oblique and lateral oblique fractures were computationally simulated in the coronal plane in the distal MDJ region of a pediatric humerus and fixated with Kirschner Wires (K-wires), elastic stable intramedullary nails (ESIN), and lateral external fixation system (EF). Stiffness values in flexion, extension, valgus, varus, internal, and external rotations for each fixation technique were calculated. RESULTS: In the transverse fracture model, 3C (1-medial, 2-lateral K-wires) had the best stiffness in flexion, varus, internal, and external rotations, while 3L (3-divergent lateral K-wires) was the most stable in extension and valgus. In the medial oblique fracture model, EF had the best stiffness in flexion, extension, valgus, and varus loadings, while the best stiffness in internal and external rotations was generated by 3MC (2-medial, 1-lateral K-wires). In the lateral oblique fracture model, 3C (1-medial, 2-lateral K-wires) had the best stiffness in flexion and internal and external rotations, while ESIN had the best stiffness in extension and valgus and varus loadings. CONCLUSION: The best stability against translational forces in lateral oblique, medial oblique, and transverse MDJ fractures would be provided by ESIN, EF, and K-wires, respectively. K-wires are however superior to both ESIN and EF in stabilizing all three fracture types against torsional forces, with both 2-crossed and 3-crossed K-wires having comparable stability. Depending on the fracture pattern, a 3-crossed configuration with either 2-divergent lateral and 1-medial K-wires or 2-medial and 1-lateral K-wires may offer the best stability. |
---|