Cargando…

Enhanced Moisture Stability by Butyldimethylsulfonium Cation in Perovskite Solar Cells

Many organic cations in halide perovskites have been studied for their application in perovskite solar cells (PSCs). Most organic cations in PSCs are based on the protic nitrogen cores, which are susceptible to deprotonation. Here, a new candidate of fully alkylated sulfonium cation (butyldimethylsu...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Bohyung, Kim, Maengsuk, Lee, Jun Hee, Seok, Sang Il
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7001633/
https://www.ncbi.nlm.nih.gov/pubmed/32042556
http://dx.doi.org/10.1002/advs.201901840
Descripción
Sumario:Many organic cations in halide perovskites have been studied for their application in perovskite solar cells (PSCs). Most organic cations in PSCs are based on the protic nitrogen cores, which are susceptible to deprotonation. Here, a new candidate of fully alkylated sulfonium cation (butyldimethylsulfonium; BDMS) is designed and successfully assembled into PSCs with the aim of increasing humidity stability. The BDMS‐based perovskites retain the structural and optical features of pristine perovskite, which results in the comparable photovoltaic performance. However, the fully alkylated aprotic nature of BDMS shows a much more pronounced effect on the increase in humidity stability, which emphasizes a generic electronic difference between protic ammonium and aprotic sulfonium cation. The current results would pave a new way to explore cations for the development of promising PSCs.