Cargando…
A low power and low ripple CMOS high voltage generator for RFID transponder EEPROM
A high-voltage generator (HVG) is an essential part of a radio frequency identification electrically erasable programmable read-only memory (RFID–EEPROM). An HVG circuit is used to generate a regulated output voltage that is higher than the power supply voltage. However, the performance of the HVG i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7001917/ https://www.ncbi.nlm.nih.gov/pubmed/32023244 http://dx.doi.org/10.1371/journal.pone.0225408 |
_version_ | 1783494310264569856 |
---|---|
author | Rahman, Labonnah Farzana Marufuzzaman, Mohammad Alam, Lubna Sidek, Lariyah Mohd Reaz, Mamun Bin Ibne |
author_facet | Rahman, Labonnah Farzana Marufuzzaman, Mohammad Alam, Lubna Sidek, Lariyah Mohd Reaz, Mamun Bin Ibne |
author_sort | Rahman, Labonnah Farzana |
collection | PubMed |
description | A high-voltage generator (HVG) is an essential part of a radio frequency identification electrically erasable programmable read-only memory (RFID–EEPROM). An HVG circuit is used to generate a regulated output voltage that is higher than the power supply voltage. However, the performance of the HVG is affected owing to the high-power dissipation, high-ripple voltage and low-pumping efficiency. Therefore, a regulator circuit consists of a voltage divider, comparator and a voltage reference, which are respectively required to reduce the ripple voltage, increase pumping efficiency and decrease the power dissipation of the HVG. Conversely, a clock driving circuit consists of the current-starved ring oscillator (CSRO), and the non- overlapping clock generator is required to drive the clock signals of the HVG circuit. In this study, the Mentor Graphics EldoSpice software package is used to design and simulate the HVG circuitry. The results showed that the designed CSRO dissipated only 4.9 μW at 10.2 MHz and that the phase noise was only -119.38 dBc/Hz at 1 MHz. Moreover, the proposed charge pump circuit was able to generate a maximum VPP of 13.53 V and it dissipated a power of only 31.01 μW for an input voltage VDD of 1.8 V. After integrating all the HVG modules, the results showed that the regulated HVG circuit was also able to generate a higher VPP of 14.59 V, while the total power dissipated was only 0.12 mW with a chip area of 0.044 mm(2). Moreover, the HVG circuit produced a pumping efficiency of 90% and reduced the ripple voltage to <4 mV. Therefore, the integration of all the proposed modules in HVG ensured low-ripple programming voltages, higher pumping efficiency, and EEPROMs with lower power dissipation, and can be extensively used in low-power applications, such as in non-volatile memory, radiofrequency identification transponders, on-chip direct current DC-DC converters. |
format | Online Article Text |
id | pubmed-7001917 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-70019172020-02-18 A low power and low ripple CMOS high voltage generator for RFID transponder EEPROM Rahman, Labonnah Farzana Marufuzzaman, Mohammad Alam, Lubna Sidek, Lariyah Mohd Reaz, Mamun Bin Ibne PLoS One Research Article A high-voltage generator (HVG) is an essential part of a radio frequency identification electrically erasable programmable read-only memory (RFID–EEPROM). An HVG circuit is used to generate a regulated output voltage that is higher than the power supply voltage. However, the performance of the HVG is affected owing to the high-power dissipation, high-ripple voltage and low-pumping efficiency. Therefore, a regulator circuit consists of a voltage divider, comparator and a voltage reference, which are respectively required to reduce the ripple voltage, increase pumping efficiency and decrease the power dissipation of the HVG. Conversely, a clock driving circuit consists of the current-starved ring oscillator (CSRO), and the non- overlapping clock generator is required to drive the clock signals of the HVG circuit. In this study, the Mentor Graphics EldoSpice software package is used to design and simulate the HVG circuitry. The results showed that the designed CSRO dissipated only 4.9 μW at 10.2 MHz and that the phase noise was only -119.38 dBc/Hz at 1 MHz. Moreover, the proposed charge pump circuit was able to generate a maximum VPP of 13.53 V and it dissipated a power of only 31.01 μW for an input voltage VDD of 1.8 V. After integrating all the HVG modules, the results showed that the regulated HVG circuit was also able to generate a higher VPP of 14.59 V, while the total power dissipated was only 0.12 mW with a chip area of 0.044 mm(2). Moreover, the HVG circuit produced a pumping efficiency of 90% and reduced the ripple voltage to <4 mV. Therefore, the integration of all the proposed modules in HVG ensured low-ripple programming voltages, higher pumping efficiency, and EEPROMs with lower power dissipation, and can be extensively used in low-power applications, such as in non-volatile memory, radiofrequency identification transponders, on-chip direct current DC-DC converters. Public Library of Science 2020-02-05 /pmc/articles/PMC7001917/ /pubmed/32023244 http://dx.doi.org/10.1371/journal.pone.0225408 Text en © 2020 Rahman et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Rahman, Labonnah Farzana Marufuzzaman, Mohammad Alam, Lubna Sidek, Lariyah Mohd Reaz, Mamun Bin Ibne A low power and low ripple CMOS high voltage generator for RFID transponder EEPROM |
title | A low power and low ripple CMOS high voltage generator for RFID transponder EEPROM |
title_full | A low power and low ripple CMOS high voltage generator for RFID transponder EEPROM |
title_fullStr | A low power and low ripple CMOS high voltage generator for RFID transponder EEPROM |
title_full_unstemmed | A low power and low ripple CMOS high voltage generator for RFID transponder EEPROM |
title_short | A low power and low ripple CMOS high voltage generator for RFID transponder EEPROM |
title_sort | low power and low ripple cmos high voltage generator for rfid transponder eeprom |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7001917/ https://www.ncbi.nlm.nih.gov/pubmed/32023244 http://dx.doi.org/10.1371/journal.pone.0225408 |
work_keys_str_mv | AT rahmanlabonnahfarzana alowpowerandlowripplecmoshighvoltagegeneratorforrfidtranspondereeprom AT marufuzzamanmohammad alowpowerandlowripplecmoshighvoltagegeneratorforrfidtranspondereeprom AT alamlubna alowpowerandlowripplecmoshighvoltagegeneratorforrfidtranspondereeprom AT sideklariyahmohd alowpowerandlowripplecmoshighvoltagegeneratorforrfidtranspondereeprom AT reazmamunbinibne alowpowerandlowripplecmoshighvoltagegeneratorforrfidtranspondereeprom AT rahmanlabonnahfarzana lowpowerandlowripplecmoshighvoltagegeneratorforrfidtranspondereeprom AT marufuzzamanmohammad lowpowerandlowripplecmoshighvoltagegeneratorforrfidtranspondereeprom AT alamlubna lowpowerandlowripplecmoshighvoltagegeneratorforrfidtranspondereeprom AT sideklariyahmohd lowpowerandlowripplecmoshighvoltagegeneratorforrfidtranspondereeprom AT reazmamunbinibne lowpowerandlowripplecmoshighvoltagegeneratorforrfidtranspondereeprom |