Cargando…
SAO2Vec: Development of an algorithm for embedding the subject–action–object (SAO) structure using Doc2Vec
In natural-language processing, the subject–action–object (SAO) structure is used to convert unstructured textual data into structured textual data comprising subjects, actions, and objects. This structure is suitable for analyzing the key elements of technology, as well as the relationships between...
Autores principales: | Kim, Sunhye, Park, Inchae, Yoon, Byungun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7001927/ https://www.ncbi.nlm.nih.gov/pubmed/32023289 http://dx.doi.org/10.1371/journal.pone.0227930 |
Ejemplares similares
-
Specialists, Scientists, and Sentiments: Word2Vec and Doc2Vec in Analysis of Scientific and Medical Texts
por: Chen, Qufei, et al.
Publicado: (2021) -
weg2vec: Event embedding for temporal networks
por: Torricelli, Maddalena, et al.
Publicado: (2020) -
KG2Vec: A node2vec-based vectorization model for knowledge graph
por: Wang, YueQun, et al.
Publicado: (2021) -
subs2vec: Word embeddings from subtitles in 55 languages
por: van Paridon, Jeroen, et al.
Publicado: (2020) -
The Spectral Underpinning of word2vec
por: Jaffe, Ariel, et al.
Publicado: (2020)