Cargando…
Machine learning for syndromic surveillance using veterinary necropsy reports
The use of natural language data for animal population surveillance represents a valuable opportunity to gather information about potential disease outbreaks, emerging zoonotic diseases, or bioterrorism threats. In this study, we evaluate machine learning methods for conducting syndromic surveillanc...
Autores principales: | Bollig, Nathan, Clarke, Lorelei, Elsmo, Elizabeth, Craven, Mark |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7001958/ https://www.ncbi.nlm.nih.gov/pubmed/32023271 http://dx.doi.org/10.1371/journal.pone.0228105 |
Ejemplares similares
-
The value of necropsy reports for animal health surveillance
por: Küker, Susanne, et al.
Publicado: (2018) -
Unsupervised clustering of wildlife necropsy data for syndromic surveillance
por: Warns-Petit, Eva, et al.
Publicado: (2010) -
Necropsy of M. Gambetta
Publicado: (1883) -
Cerebral Hemorrhage in Hemophilia: Case Report with Necropsy Findings
por: Mark, Philip F.
Publicado: (1942) -
Factors associated with misdiagnosis: the usefulness of necropsy
por: Moreno, G, et al.
Publicado: (2015)