Cargando…
Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity
Cerebellar granule cells (GCs) make up the majority of all neurons in the vertebrate brain, but heterogeneities among GCs and potential functional consequences are poorly understood. Here, we identified unexpected gradients in the biophysical properties of GCs in mice. GCs closer to the white matter...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002074/ https://www.ncbi.nlm.nih.gov/pubmed/32022688 http://dx.doi.org/10.7554/eLife.51771 |
_version_ | 1783494334831656960 |
---|---|
author | Straub, Isabelle Witter, Laurens Eshra, Abdelmoneim Hoidis, Miriam Byczkowicz, Niklas Maas, Sebastian Delvendahl, Igor Dorgans, Kevin Savier, Elise Bechmann, Ingo Krueger, Martin Isope, Philippe Hallermann, Stefan |
author_facet | Straub, Isabelle Witter, Laurens Eshra, Abdelmoneim Hoidis, Miriam Byczkowicz, Niklas Maas, Sebastian Delvendahl, Igor Dorgans, Kevin Savier, Elise Bechmann, Ingo Krueger, Martin Isope, Philippe Hallermann, Stefan |
author_sort | Straub, Isabelle |
collection | PubMed |
description | Cerebellar granule cells (GCs) make up the majority of all neurons in the vertebrate brain, but heterogeneities among GCs and potential functional consequences are poorly understood. Here, we identified unexpected gradients in the biophysical properties of GCs in mice. GCs closer to the white matter (inner-zone GCs) had higher firing thresholds and could sustain firing with larger current inputs than GCs closer to the Purkinje cell layer (outer-zone GCs). Dynamic Clamp experiments showed that inner- and outer-zone GCs preferentially respond to high- and low-frequency mossy fiber inputs, respectively, enabling dispersion of the mossy fiber input into its frequency components as performed by a Fourier transformation. Furthermore, inner-zone GCs have faster axonal conduction velocity and elicit faster synaptic potentials in Purkinje cells. Neuronal network modeling revealed that these gradients improve spike-timing precision of Purkinje cells and decrease the number of GCs required to learn spike-sequences. Thus, our study uncovers biophysical gradients in the cerebellar cortex enabling a Fourier-like transformation of mossy fiber inputs. |
format | Online Article Text |
id | pubmed-7002074 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-70020742020-02-06 Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity Straub, Isabelle Witter, Laurens Eshra, Abdelmoneim Hoidis, Miriam Byczkowicz, Niklas Maas, Sebastian Delvendahl, Igor Dorgans, Kevin Savier, Elise Bechmann, Ingo Krueger, Martin Isope, Philippe Hallermann, Stefan eLife Neuroscience Cerebellar granule cells (GCs) make up the majority of all neurons in the vertebrate brain, but heterogeneities among GCs and potential functional consequences are poorly understood. Here, we identified unexpected gradients in the biophysical properties of GCs in mice. GCs closer to the white matter (inner-zone GCs) had higher firing thresholds and could sustain firing with larger current inputs than GCs closer to the Purkinje cell layer (outer-zone GCs). Dynamic Clamp experiments showed that inner- and outer-zone GCs preferentially respond to high- and low-frequency mossy fiber inputs, respectively, enabling dispersion of the mossy fiber input into its frequency components as performed by a Fourier transformation. Furthermore, inner-zone GCs have faster axonal conduction velocity and elicit faster synaptic potentials in Purkinje cells. Neuronal network modeling revealed that these gradients improve spike-timing precision of Purkinje cells and decrease the number of GCs required to learn spike-sequences. Thus, our study uncovers biophysical gradients in the cerebellar cortex enabling a Fourier-like transformation of mossy fiber inputs. eLife Sciences Publications, Ltd 2020-02-05 /pmc/articles/PMC7002074/ /pubmed/32022688 http://dx.doi.org/10.7554/eLife.51771 Text en © 2020, Straub et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience Straub, Isabelle Witter, Laurens Eshra, Abdelmoneim Hoidis, Miriam Byczkowicz, Niklas Maas, Sebastian Delvendahl, Igor Dorgans, Kevin Savier, Elise Bechmann, Ingo Krueger, Martin Isope, Philippe Hallermann, Stefan Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity |
title | Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity |
title_full | Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity |
title_fullStr | Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity |
title_full_unstemmed | Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity |
title_short | Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity |
title_sort | gradients in the mammalian cerebellar cortex enable fourier-like transformation and improve storing capacity |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002074/ https://www.ncbi.nlm.nih.gov/pubmed/32022688 http://dx.doi.org/10.7554/eLife.51771 |
work_keys_str_mv | AT straubisabelle gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity AT witterlaurens gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity AT eshraabdelmoneim gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity AT hoidismiriam gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity AT byczkowiczniklas gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity AT maassebastian gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity AT delvendahligor gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity AT dorganskevin gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity AT savierelise gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity AT bechmanningo gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity AT kruegermartin gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity AT isopephilippe gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity AT hallermannstefan gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity |