Cargando…

Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity

Cerebellar granule cells (GCs) make up the majority of all neurons in the vertebrate brain, but heterogeneities among GCs and potential functional consequences are poorly understood. Here, we identified unexpected gradients in the biophysical properties of GCs in mice. GCs closer to the white matter...

Descripción completa

Detalles Bibliográficos
Autores principales: Straub, Isabelle, Witter, Laurens, Eshra, Abdelmoneim, Hoidis, Miriam, Byczkowicz, Niklas, Maas, Sebastian, Delvendahl, Igor, Dorgans, Kevin, Savier, Elise, Bechmann, Ingo, Krueger, Martin, Isope, Philippe, Hallermann, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002074/
https://www.ncbi.nlm.nih.gov/pubmed/32022688
http://dx.doi.org/10.7554/eLife.51771
_version_ 1783494334831656960
author Straub, Isabelle
Witter, Laurens
Eshra, Abdelmoneim
Hoidis, Miriam
Byczkowicz, Niklas
Maas, Sebastian
Delvendahl, Igor
Dorgans, Kevin
Savier, Elise
Bechmann, Ingo
Krueger, Martin
Isope, Philippe
Hallermann, Stefan
author_facet Straub, Isabelle
Witter, Laurens
Eshra, Abdelmoneim
Hoidis, Miriam
Byczkowicz, Niklas
Maas, Sebastian
Delvendahl, Igor
Dorgans, Kevin
Savier, Elise
Bechmann, Ingo
Krueger, Martin
Isope, Philippe
Hallermann, Stefan
author_sort Straub, Isabelle
collection PubMed
description Cerebellar granule cells (GCs) make up the majority of all neurons in the vertebrate brain, but heterogeneities among GCs and potential functional consequences are poorly understood. Here, we identified unexpected gradients in the biophysical properties of GCs in mice. GCs closer to the white matter (inner-zone GCs) had higher firing thresholds and could sustain firing with larger current inputs than GCs closer to the Purkinje cell layer (outer-zone GCs). Dynamic Clamp experiments showed that inner- and outer-zone GCs preferentially respond to high- and low-frequency mossy fiber inputs, respectively, enabling dispersion of the mossy fiber input into its frequency components as performed by a Fourier transformation. Furthermore, inner-zone GCs have faster axonal conduction velocity and elicit faster synaptic potentials in Purkinje cells. Neuronal network modeling revealed that these gradients improve spike-timing precision of Purkinje cells and decrease the number of GCs required to learn spike-sequences. Thus, our study uncovers biophysical gradients in the cerebellar cortex enabling a Fourier-like transformation of mossy fiber inputs.
format Online
Article
Text
id pubmed-7002074
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-70020742020-02-06 Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity Straub, Isabelle Witter, Laurens Eshra, Abdelmoneim Hoidis, Miriam Byczkowicz, Niklas Maas, Sebastian Delvendahl, Igor Dorgans, Kevin Savier, Elise Bechmann, Ingo Krueger, Martin Isope, Philippe Hallermann, Stefan eLife Neuroscience Cerebellar granule cells (GCs) make up the majority of all neurons in the vertebrate brain, but heterogeneities among GCs and potential functional consequences are poorly understood. Here, we identified unexpected gradients in the biophysical properties of GCs in mice. GCs closer to the white matter (inner-zone GCs) had higher firing thresholds and could sustain firing with larger current inputs than GCs closer to the Purkinje cell layer (outer-zone GCs). Dynamic Clamp experiments showed that inner- and outer-zone GCs preferentially respond to high- and low-frequency mossy fiber inputs, respectively, enabling dispersion of the mossy fiber input into its frequency components as performed by a Fourier transformation. Furthermore, inner-zone GCs have faster axonal conduction velocity and elicit faster synaptic potentials in Purkinje cells. Neuronal network modeling revealed that these gradients improve spike-timing precision of Purkinje cells and decrease the number of GCs required to learn spike-sequences. Thus, our study uncovers biophysical gradients in the cerebellar cortex enabling a Fourier-like transformation of mossy fiber inputs. eLife Sciences Publications, Ltd 2020-02-05 /pmc/articles/PMC7002074/ /pubmed/32022688 http://dx.doi.org/10.7554/eLife.51771 Text en © 2020, Straub et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Neuroscience
Straub, Isabelle
Witter, Laurens
Eshra, Abdelmoneim
Hoidis, Miriam
Byczkowicz, Niklas
Maas, Sebastian
Delvendahl, Igor
Dorgans, Kevin
Savier, Elise
Bechmann, Ingo
Krueger, Martin
Isope, Philippe
Hallermann, Stefan
Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity
title Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity
title_full Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity
title_fullStr Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity
title_full_unstemmed Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity
title_short Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity
title_sort gradients in the mammalian cerebellar cortex enable fourier-like transformation and improve storing capacity
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002074/
https://www.ncbi.nlm.nih.gov/pubmed/32022688
http://dx.doi.org/10.7554/eLife.51771
work_keys_str_mv AT straubisabelle gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity
AT witterlaurens gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity
AT eshraabdelmoneim gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity
AT hoidismiriam gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity
AT byczkowiczniklas gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity
AT maassebastian gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity
AT delvendahligor gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity
AT dorganskevin gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity
AT savierelise gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity
AT bechmanningo gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity
AT kruegermartin gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity
AT isopephilippe gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity
AT hallermannstefan gradientsinthemammaliancerebellarcortexenablefourierliketransformationandimprovestoringcapacity