Cargando…
Geometry-Aware Cell Detection with Deep Learning
Analyzing cells and tissues under a microscope is a cornerstone of biological research and clinical practice. However, the challenge faced by conventional microscopy image analysis is the fact that cell recognition through a microscope is still time-consuming and lacks both accuracy and consistency....
Autores principales: | Jiang, Hao, Li, Sen, Liu, Weihuang, Zheng, Hongjin, Liu, Jinghao, Zhang, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002118/ https://www.ncbi.nlm.nih.gov/pubmed/32019836 http://dx.doi.org/10.1128/mSystems.00840-19 |
Ejemplares similares
-
Correction of out-of-focus microscopic images by deep learning
por: Zhang, Chi, et al.
Publicado: (2022) -
Deep learning for COVID-19 chest CT (computed tomography) image analysis: A lesson from lung cancer
por: Jiang, Hao, et al.
Publicado: (2021) -
Geometry-aware manipulability learning, tracking, and transfer
por: Jaquier, Noémie, et al.
Publicado: (2020) -
Deep Learning Methods for Wood Composites Failure Predication
por: Yang, Bin, et al.
Publicado: (2023) -
Degradation-Aware Deep Learning Framework for Sparse-View CT Reconstruction
por: Sun, Chang, et al.
Publicado: (2021)