Cargando…
RNA-Seq Analysis Illuminates the Early Stages of Plasmodium Liver Infection
The apicomplexan parasites Plasmodium spp. are the causative agents of malaria, a disease that poses a significant global health burden. Plasmodium spp. initiate infection of the human host by transforming and replicating within hepatocytes. This liver stage (LS) is poorly understood compared to oth...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002348/ https://www.ncbi.nlm.nih.gov/pubmed/32019802 http://dx.doi.org/10.1128/mBio.03234-19 |
Sumario: | The apicomplexan parasites Plasmodium spp. are the causative agents of malaria, a disease that poses a significant global health burden. Plasmodium spp. initiate infection of the human host by transforming and replicating within hepatocytes. This liver stage (LS) is poorly understood compared to other Plasmodium life stages, which has hindered our ability to target these parasites for disease prevention. We conducted an extensive transcriptome sequencing (RNA-Seq) analysis throughout the Plasmodium berghei LS, covering as early as 2 h postinfection (hpi) and extending to 48 hpi. Our data revealed that hundreds of genes are differentially expressed at 2 hpi and that multiple genes shown to be important for later infection are upregulated as early as 12 hpi. Using hierarchical clustering along with coexpression analysis, we identified clusters functionally enriched for important liver-stage processes such as interactions with the host cell and redox homeostasis. Furthermore, some of these clusters were highly correlated to the expression of ApiAP2 transcription factors, while showing enrichment of mostly uncharacterized DNA binding motifs. This finding indicates potential LS targets for these transcription factors, while also hinting at alternative uncharacterized DNA binding motifs and transcription factors during this stage. Our work presents a window into the previously undescribed transcriptome of Plasmodium upon host hepatocyte infection to enable a comprehensive view of the parasite’s LS. These findings also provide a blueprint for future studies that extend hypotheses concerning LS gene function in P. berghei to human-infective Plasmodium parasites. |
---|