Cargando…
A Hybrid Model for Predicting Pattern Recognition Receptors Using Evolutionary Information
This study describes a method developed for predicting pattern recognition receptors (PRRs), which are an integral part of the immune system. The models developed here were trained and evaluated on the largest possible non-redundant PRRs, obtained from PRRDB 2.0, and non-pattern recognition receptor...
Autores principales: | Kaur, Dilraj, Arora, Chakit, Raghava, Gajendra P. S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002473/ https://www.ncbi.nlm.nih.gov/pubmed/32082326 http://dx.doi.org/10.3389/fimmu.2020.00071 |
Ejemplares similares
-
In-Silico Tool for Predicting, Scanning, and Designing Defensins
por: Kaur, Dilraj, et al.
Publicado: (2021) -
Prognostic biomarkers for predicting papillary thyroid carcinoma patients at high risk using nine genes of apoptotic pathway
por: Arora, Chakit, et al.
Publicado: (2021) -
Risk prediction in cutaneous melanoma patients from their clinico-pathological features: superiority of clinical data over gene expression data
por: Arora, Chakit, et al.
Publicado: (2020) -
PRRDB 2.0: a comprehensive database of pattern-recognition receptors and their ligands
por: Kaur, Dilraj, et al.
Publicado: (2019) -
Prediction of risk scores for colorectal cancer patients from the concentration of proteins involved in mitochondrial apoptotic pathway
por: Lathwal, Anjali, et al.
Publicado: (2019)