Cargando…

Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations

Hyperspectral fluorescence imaging is gaining popularity for it enables multiplexing of spatio-temporal dynamics across scales for molecules, cells and tissues with multiple fluorescent labels. This is made possible by adding the dimension of wavelength to the dataset. The resulting datasets are hig...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Wen, Koo, Daniel E. S., Kitano, Masahiro, Chiang, Hsiao J., Trinh, Le A., Turcatel, Gianluca, Steventon, Benjamin, Arnesano, Cosimo, Warburton, David, Fraser, Scott E., Cutrale, Francesco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002680/
https://www.ncbi.nlm.nih.gov/pubmed/32024828
http://dx.doi.org/10.1038/s41467-020-14486-8
Descripción
Sumario:Hyperspectral fluorescence imaging is gaining popularity for it enables multiplexing of spatio-temporal dynamics across scales for molecules, cells and tissues with multiple fluorescent labels. This is made possible by adding the dimension of wavelength to the dataset. The resulting datasets are high in information density and often require lengthy analyses to separate the overlapping fluorescent spectra. Understanding and visualizing these large multi-dimensional datasets during acquisition and pre-processing can be challenging. Here we present Spectrally Encoded Enhanced Representations (SEER), an approach for improved and computationally efficient simultaneous color visualization of multiple spectral components of hyperspectral fluorescence images. Exploiting the mathematical properties of the phasor method, we transform the wavelength space into information-rich color maps for RGB display visualization. We present multiple biological fluorescent samples and highlight SEER’s enhancement of specific and subtle spectral differences, providing a fast, intuitive and mathematical way to interpret hyperspectral images during collection, pre-processing and analysis.