Cargando…

Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations

Hyperspectral fluorescence imaging is gaining popularity for it enables multiplexing of spatio-temporal dynamics across scales for molecules, cells and tissues with multiple fluorescent labels. This is made possible by adding the dimension of wavelength to the dataset. The resulting datasets are hig...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Wen, Koo, Daniel E. S., Kitano, Masahiro, Chiang, Hsiao J., Trinh, Le A., Turcatel, Gianluca, Steventon, Benjamin, Arnesano, Cosimo, Warburton, David, Fraser, Scott E., Cutrale, Francesco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002680/
https://www.ncbi.nlm.nih.gov/pubmed/32024828
http://dx.doi.org/10.1038/s41467-020-14486-8
_version_ 1783494409336127488
author Shi, Wen
Koo, Daniel E. S.
Kitano, Masahiro
Chiang, Hsiao J.
Trinh, Le A.
Turcatel, Gianluca
Steventon, Benjamin
Arnesano, Cosimo
Warburton, David
Fraser, Scott E.
Cutrale, Francesco
author_facet Shi, Wen
Koo, Daniel E. S.
Kitano, Masahiro
Chiang, Hsiao J.
Trinh, Le A.
Turcatel, Gianluca
Steventon, Benjamin
Arnesano, Cosimo
Warburton, David
Fraser, Scott E.
Cutrale, Francesco
author_sort Shi, Wen
collection PubMed
description Hyperspectral fluorescence imaging is gaining popularity for it enables multiplexing of spatio-temporal dynamics across scales for molecules, cells and tissues with multiple fluorescent labels. This is made possible by adding the dimension of wavelength to the dataset. The resulting datasets are high in information density and often require lengthy analyses to separate the overlapping fluorescent spectra. Understanding and visualizing these large multi-dimensional datasets during acquisition and pre-processing can be challenging. Here we present Spectrally Encoded Enhanced Representations (SEER), an approach for improved and computationally efficient simultaneous color visualization of multiple spectral components of hyperspectral fluorescence images. Exploiting the mathematical properties of the phasor method, we transform the wavelength space into information-rich color maps for RGB display visualization. We present multiple biological fluorescent samples and highlight SEER’s enhancement of specific and subtle spectral differences, providing a fast, intuitive and mathematical way to interpret hyperspectral images during collection, pre-processing and analysis.
format Online
Article
Text
id pubmed-7002680
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-70026802020-02-07 Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations Shi, Wen Koo, Daniel E. S. Kitano, Masahiro Chiang, Hsiao J. Trinh, Le A. Turcatel, Gianluca Steventon, Benjamin Arnesano, Cosimo Warburton, David Fraser, Scott E. Cutrale, Francesco Nat Commun Article Hyperspectral fluorescence imaging is gaining popularity for it enables multiplexing of spatio-temporal dynamics across scales for molecules, cells and tissues with multiple fluorescent labels. This is made possible by adding the dimension of wavelength to the dataset. The resulting datasets are high in information density and often require lengthy analyses to separate the overlapping fluorescent spectra. Understanding and visualizing these large multi-dimensional datasets during acquisition and pre-processing can be challenging. Here we present Spectrally Encoded Enhanced Representations (SEER), an approach for improved and computationally efficient simultaneous color visualization of multiple spectral components of hyperspectral fluorescence images. Exploiting the mathematical properties of the phasor method, we transform the wavelength space into information-rich color maps for RGB display visualization. We present multiple biological fluorescent samples and highlight SEER’s enhancement of specific and subtle spectral differences, providing a fast, intuitive and mathematical way to interpret hyperspectral images during collection, pre-processing and analysis. Nature Publishing Group UK 2020-02-05 /pmc/articles/PMC7002680/ /pubmed/32024828 http://dx.doi.org/10.1038/s41467-020-14486-8 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Shi, Wen
Koo, Daniel E. S.
Kitano, Masahiro
Chiang, Hsiao J.
Trinh, Le A.
Turcatel, Gianluca
Steventon, Benjamin
Arnesano, Cosimo
Warburton, David
Fraser, Scott E.
Cutrale, Francesco
Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations
title Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations
title_full Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations
title_fullStr Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations
title_full_unstemmed Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations
title_short Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations
title_sort pre-processing visualization of hyperspectral fluorescent data with spectrally encoded enhanced representations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002680/
https://www.ncbi.nlm.nih.gov/pubmed/32024828
http://dx.doi.org/10.1038/s41467-020-14486-8
work_keys_str_mv AT shiwen preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations
AT koodanieles preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations
AT kitanomasahiro preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations
AT chianghsiaoj preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations
AT trinhlea preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations
AT turcatelgianluca preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations
AT steventonbenjamin preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations
AT arnesanocosimo preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations
AT warburtondavid preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations
AT fraserscotte preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations
AT cutralefrancesco preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations