Cargando…
Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations
Hyperspectral fluorescence imaging is gaining popularity for it enables multiplexing of spatio-temporal dynamics across scales for molecules, cells and tissues with multiple fluorescent labels. This is made possible by adding the dimension of wavelength to the dataset. The resulting datasets are hig...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002680/ https://www.ncbi.nlm.nih.gov/pubmed/32024828 http://dx.doi.org/10.1038/s41467-020-14486-8 |
_version_ | 1783494409336127488 |
---|---|
author | Shi, Wen Koo, Daniel E. S. Kitano, Masahiro Chiang, Hsiao J. Trinh, Le A. Turcatel, Gianluca Steventon, Benjamin Arnesano, Cosimo Warburton, David Fraser, Scott E. Cutrale, Francesco |
author_facet | Shi, Wen Koo, Daniel E. S. Kitano, Masahiro Chiang, Hsiao J. Trinh, Le A. Turcatel, Gianluca Steventon, Benjamin Arnesano, Cosimo Warburton, David Fraser, Scott E. Cutrale, Francesco |
author_sort | Shi, Wen |
collection | PubMed |
description | Hyperspectral fluorescence imaging is gaining popularity for it enables multiplexing of spatio-temporal dynamics across scales for molecules, cells and tissues with multiple fluorescent labels. This is made possible by adding the dimension of wavelength to the dataset. The resulting datasets are high in information density and often require lengthy analyses to separate the overlapping fluorescent spectra. Understanding and visualizing these large multi-dimensional datasets during acquisition and pre-processing can be challenging. Here we present Spectrally Encoded Enhanced Representations (SEER), an approach for improved and computationally efficient simultaneous color visualization of multiple spectral components of hyperspectral fluorescence images. Exploiting the mathematical properties of the phasor method, we transform the wavelength space into information-rich color maps for RGB display visualization. We present multiple biological fluorescent samples and highlight SEER’s enhancement of specific and subtle spectral differences, providing a fast, intuitive and mathematical way to interpret hyperspectral images during collection, pre-processing and analysis. |
format | Online Article Text |
id | pubmed-7002680 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-70026802020-02-07 Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations Shi, Wen Koo, Daniel E. S. Kitano, Masahiro Chiang, Hsiao J. Trinh, Le A. Turcatel, Gianluca Steventon, Benjamin Arnesano, Cosimo Warburton, David Fraser, Scott E. Cutrale, Francesco Nat Commun Article Hyperspectral fluorescence imaging is gaining popularity for it enables multiplexing of spatio-temporal dynamics across scales for molecules, cells and tissues with multiple fluorescent labels. This is made possible by adding the dimension of wavelength to the dataset. The resulting datasets are high in information density and often require lengthy analyses to separate the overlapping fluorescent spectra. Understanding and visualizing these large multi-dimensional datasets during acquisition and pre-processing can be challenging. Here we present Spectrally Encoded Enhanced Representations (SEER), an approach for improved and computationally efficient simultaneous color visualization of multiple spectral components of hyperspectral fluorescence images. Exploiting the mathematical properties of the phasor method, we transform the wavelength space into information-rich color maps for RGB display visualization. We present multiple biological fluorescent samples and highlight SEER’s enhancement of specific and subtle spectral differences, providing a fast, intuitive and mathematical way to interpret hyperspectral images during collection, pre-processing and analysis. Nature Publishing Group UK 2020-02-05 /pmc/articles/PMC7002680/ /pubmed/32024828 http://dx.doi.org/10.1038/s41467-020-14486-8 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Shi, Wen Koo, Daniel E. S. Kitano, Masahiro Chiang, Hsiao J. Trinh, Le A. Turcatel, Gianluca Steventon, Benjamin Arnesano, Cosimo Warburton, David Fraser, Scott E. Cutrale, Francesco Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations |
title | Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations |
title_full | Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations |
title_fullStr | Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations |
title_full_unstemmed | Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations |
title_short | Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations |
title_sort | pre-processing visualization of hyperspectral fluorescent data with spectrally encoded enhanced representations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002680/ https://www.ncbi.nlm.nih.gov/pubmed/32024828 http://dx.doi.org/10.1038/s41467-020-14486-8 |
work_keys_str_mv | AT shiwen preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations AT koodanieles preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations AT kitanomasahiro preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations AT chianghsiaoj preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations AT trinhlea preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations AT turcatelgianluca preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations AT steventonbenjamin preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations AT arnesanocosimo preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations AT warburtondavid preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations AT fraserscotte preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations AT cutralefrancesco preprocessingvisualizationofhyperspectralfluorescentdatawithspectrallyencodedenhancedrepresentations |