Cargando…

Human dental pulp stem cells differentiation to neural cells, osteocytes and adipocytes-An in vitro study

Human dental pulp stem cells (hDPSCs) are promising source of cells for numerous and varied regenerative medicine applications as those possess high proliferation potential with multilineage differentiation capacity compare to other sources of adult stem cells; therefore, hDPSCs could be the good so...

Descripción completa

Detalles Bibliográficos
Autores principales: Luke, Alexander M., Patnaik, Rajashree, Kuriadom, Sam, Abu-Fanas, Salem, Mathew, Simy, Shetty, Krishna P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002807/
https://www.ncbi.nlm.nih.gov/pubmed/32042932
http://dx.doi.org/10.1016/j.heliyon.2019.e03054
Descripción
Sumario:Human dental pulp stem cells (hDPSCs) are promising source of cells for numerous and varied regenerative medicine applications as those possess high proliferation potential with multilineage differentiation capacity compare to other sources of adult stem cells; therefore, hDPSCs could be the good source for autologous transplantation in tissue engineering and regenerative medicine. In this study stem cells were isolated from dental pulp and were characterised by flowcytometry and immunocytochemistry. The controlled cells as well as, 7-day cultured cells were positive for transcription factors, OCT 4 and SOX 2 thatconfirmed isolated cellsasmesenchymal stem cells (MSCs). These cells showed positive expression for CD 19, CD 73, CD 90, CD 105 and are negative for CD 34, CD 45. Viability of hDPSCS were studied by trypan blue (TB) staining and fluorescent microscopic study. After 7 days of passaging by using several growth factors, cells express neural cell markers oligodendrocyte and glial fibrillary acidic protein. Specifically, osteocytes were grown from dental pulp MSCSsin vitro with the help of growth factors, dexamethasone, ascorbic acid-2- phosphate and β-glycerophosphate whereas, adipocytes were grown with indomethacin, 3-isobutyl-1-methylxanthine and insulin. Osteocytes and adipocytes were characterized by von Kossa and Oil red O staining, respectively. Chromosomal analysis of dental pulp-MSCs was done for qualitative assessment of MSCs. Karyotyping indicated diploid chromosome number in dental pulp derived MSCs. In vitro grown osteocytes could be used for bone fracture reunion cases, and adipocytes could be used for further research purposes.