Cargando…
Molecular Insights from Conformational Ensembles via Machine Learning
Biomolecular simulations are intrinsically high dimensional and generate noisy data sets of ever-increasing size. Extracting important features from the data is crucial for understanding the biophysical properties of molecular processes, but remains a big challenge. Machine learning (ML) provides po...
Autores principales: | Fleetwood, Oliver, Kasimova, Marina A., Westerlund, Annie M., Delemotte, Lucie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Biophysical Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002924/ https://www.ncbi.nlm.nih.gov/pubmed/31952811 http://dx.doi.org/10.1016/j.bpj.2019.12.016 |
Ejemplares similares
-
Determining the molecular basis of voltage sensitivity in membrane proteins
por: Kasimova, Marina A., et al.
Publicado: (2018) -
Exploring the Viral Channel Kcv(PBCV-1) Function via Computation
por: Andersson, Alma E. V., et al.
Publicado: (2018) -
Identification of ligand-specific G protein-coupled receptor states and prediction of downstream efficacy via data-driven modeling
por: Fleetwood, Oliver, et al.
Publicado: (2021) -
Direct generation of protein conformational ensembles via machine learning
por: Janson, Giacomo, et al.
Publicado: (2023) -
Energy Landscapes Reveal Agonist Control of G Protein-Coupled
Receptor Activation via Microswitches
por: Fleetwood, Oliver, et al.
Publicado: (2020)