Cargando…

Dexmedetomidine alleviates cisplatin-induced acute kidney injury by attenuating endoplasmic reticulum stress-induced apoptosis via the α(2)AR/PI3K/AKT pathway

Cisplatin (CP) is an effective antineoplastic agent; however, CP-induced acute kidney injury (AKI) seriously affects the prognosis of patients with cancer. Endoplasmic reticulum (ER) stress (ERS)-induced apoptosis serves a pivotal role in the pathogenesis of CP-induced AKI. Dexmedetomidine (Dex), a...

Descripción completa

Detalles Bibliográficos
Autores principales: Chai, Yejing, Zhu, Kangsheng, Li, Chao, Wang, Xiaofan, Shen, Junmei, Yong, Fangfang, Jia, Huiqun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003053/
https://www.ncbi.nlm.nih.gov/pubmed/32016445
http://dx.doi.org/10.3892/mmr.2020.10962
Descripción
Sumario:Cisplatin (CP) is an effective antineoplastic agent; however, CP-induced acute kidney injury (AKI) seriously affects the prognosis of patients with cancer. Endoplasmic reticulum (ER) stress (ERS)-induced apoptosis serves a pivotal role in the pathogenesis of CP-induced AKI. Dexmedetomidine (Dex), a potent α(2) adrenergic agonist, has been reported to exert protective effects against AKI. However, the protective effects of Dex against CP-induced AKI and the potential molecular mechanisms remain unknown. In the present study, male Sprague-Dawley rats were divided into four groups (n=10/group), as follows: Control group; CP group, rats received an intraperitoneal (i.p.) injection of 5 mg/kg CP; Dex + CP group, rats received an i.p. injection of 25 µg/kg Dex immediately after CP treatment; and Dex + CP + atipamezole (Atip) group, rats received an i.p. injection of 250 µg/kg Atip, an α(2) adrenoreceptor (α(2)AR) antagonist, and then received the same treatment as the Dex + CP group. Rats were anesthetized and sacrificed 96 h after CP injection. Subsequently, serum blood urea nitrogen (BUN) and serum creatinine (Scr) were analyzed, and kidney samples were collected for analyses. Pathological changes were examined using hematoxylin and eosin staining, and protein expression levels were assessed using western blotting and immunohistochemical staining. In addition, apoptosis was examined using a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. The present results suggested that Dex protected against CP-induced AKI by attenuating histological changes in the kidney, serum BUN and Scr production. Furthermore, the expression levels of 78-kDa glucose-regulated protein, C/EBP homologous protein and caspase-12, and the apoptotic rate in the kidney were decreased following Dex treatment. In addition, the expression levels of phosphorylated (p)-PI3K and p-AKT in the Dex + CP group were significantly increased. Conversely, the renoprotective effects of Dex were attenuated following the addition of Atip. In conclusion, Dex may alleviate CP-induced AKI by attenuating ERS-induced apoptosis, at least in part, via the α(2)AR/PI3K/AKT signaling pathway.