Cargando…

Increased age at first-mating interacting with herd size or herd productivity decreases longevity and lifetime reproductive efficiency of sows in breeding herds

BACKGROUND: Our objectives were to characterize sow life and herd-life performance and examine two-way interactions between age at first-mating (AFM) and either herd size or herd productivity groups for the performance of sows. Data contained 146,140 sows in 143 Spanish herds. Sow life days is defin...

Descripción completa

Detalles Bibliográficos
Autores principales: Koketsu, Yuzo, Iida, Ryosuke, Piñeiro, Carlos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003408/
https://www.ncbi.nlm.nih.gov/pubmed/32047646
http://dx.doi.org/10.1186/s40813-019-0142-9
Descripción
Sumario:BACKGROUND: Our objectives were to characterize sow life and herd-life performance and examine two-way interactions between age at first-mating (AFM) and either herd size or herd productivity groups for the performance of sows. Data contained 146,140 sows in 143 Spanish herds. Sow life days is defined as the number of days from birth to removal, whereas the herd-life days is from AFM date to removal date. Herds were categorized into two herd size groups and two productivity groups based on the respective 75th percentiles of farm means of herd size and the number of piglets weaned per sows per year: large (> 1017 sows) or small-to-mid herds (< 1017 sows), and high productivity (> 26.5 piglets) or ordinary herds (< 26.5 piglets). A two-level liner mixed-effects model was applied to examine AFM, herd size groups, productivity groups and their interactions for sow life or herd-life performance. RESULTS: No differences were found between either herd size or herd productivity groups for AFM or the number of parity at removal. However, late AFM was associated with decreased removal parity, herd-life days, herd-life piglets born alive and herd-life annualized piglets weaned, as well as with increased sow life days and herd-life nonproductive days (P < 0.05). Also, significant two-way interactions between AFM and both herd size and productivity groups were found for longevity, prolificacy, fertility and reproductive efficiency of sows. For example, as AFM increased from 190 to 370 days, sows in large herds decreased herd-life days by 156 days, whereas for sows in small-to-mid herds the decrease was only 42 days. Also, for the same AFM increase, sows in large herds had 5 fewer sow life annualized piglets weaned, whereas for sows in small-to-mid herds this sow reproductive efficiency measure was only decreased by 3.5 piglets. Additionally, for ordinary herds, sows in large herds had more herd-life annualized piglets weaned than those in small-to-mid herds (P < 0.05), but no such association was found for high productivity herds (P > 0.10). CONCLUSION: We recommend decreasing the number of late AFM sows in the herd and also recommend improving longevity and lifetime efficiency of individual sows.