Cargando…
Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy – Artificial intelligence versus clinician for screening
PURPOSE: Deep learning is a newer and advanced subfield in artificial intelligence (AI). The aim of our study is to validate a machine-based algorithm developed based on deep convolutional neural networks as a tool for screening to detect referable diabetic retinopathy (DR). METHODS: An AI algorithm...
Autores principales: | Shah, Payal, Mishra, Divyansh K, Shanmugam, Mahesh P, Doshi, Bindiya, Jayaraj, Hariprasad, Ramanjulu, Rajesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003578/ https://www.ncbi.nlm.nih.gov/pubmed/31957737 http://dx.doi.org/10.4103/ijo.IJO_966_19 |
Ejemplares similares
-
Acceptability of artificial intelligence-based retina screening in general population
por: Shah, Payal, et al.
Publicado: (2022) -
Swept source optical coherence tomography in globe perforation
por: Dubey, Devashish, et al.
Publicado: (2019) -
Impact of systemic parameters before commencing anti-vascular endothelial growth factor therapy for diabetic macular edema – Pan-Indian survey of retina specialists
por: Shanmugam, P Mahesh, et al.
Publicado: (2021) -
Comparison of standard and “innovative wide-field” optical coherence tomography images in assessment of vitreoretinal interface in proliferative diabetic retinopathy: A pilot study
por: Mishra, Divyansh Kailashchandra, et al.
Publicado: (2021) -
Coats’ disease – Prognostic factors for globe and vision salvage in children, a long-term experience
por: Shanmugam, Mahesh P, et al.
Publicado: (2022)