Cargando…
Multiparametric deep learning tissue signatures for a radiological biomarker of breast cancer: Preliminary results
PURPOSE: Deep learning is emerging in radiology due to the increased computational capabilities available to reading rooms. These computational developments have the ability to mimic the radiologist and may allow for more accurate tissue characterization of normal and pathological lesion tissue to a...
Autores principales: | Parekh, Vishwa S., Macura, Katarzyna J., Harvey, Susan C., Kamel, Ihab R., EI‐Khouli, Riham, Bluemke, David A., Jacobs, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003775/ https://www.ncbi.nlm.nih.gov/pubmed/31598978 http://dx.doi.org/10.1002/mp.13849 |
Ejemplares similares
-
Bridging the gap between prostate radiology and pathology through machine learning
por: Bhattacharya, Indrani, et al.
Publicado: (2022) -
Automated estimation of total lung volume using chest radiographs and deep learning
por: Sogancioglu, Ecem, et al.
Publicado: (2022) -
Lung cancer diagnosis using deep attention‐based multiple instance learning and radiomics
por: Chen, Junhua, et al.
Publicado: (2022) -
Deep convolutional neural networks for multiplanar lung nodule detection: Improvement in small nodule identification
por: Zheng, Sunyi, et al.
Publicado: (2020) -
Predicting the outcome of radiotherapy in brain metastasis by integrating the clinical and MRI‐based deep learning features
por: Jalalifar, Seyed Ali, et al.
Publicado: (2022)