Cargando…

Regioselective Functionalization of [2.2]Paracyclophanes: Recent Synthetic Progress and Perspectives

[2.2]Paracyclophane (PCP) is a prevalent scaffold that is widely utilized in asymmetric synthesis, π‐stacked polymers, energy materials, and functional parylene coatings that finds broad applications in bio‐ and materials science. In the last few years, [2.2]paracyclophane chemistry has progressed t...

Descripción completa

Detalles Bibliográficos
Autores principales: Hassan, Zahid, Spuling, Eduard, Knoll, Daniel M., Bräse, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003812/
https://www.ncbi.nlm.nih.gov/pubmed/31283092
http://dx.doi.org/10.1002/anie.201904863
Descripción
Sumario:[2.2]Paracyclophane (PCP) is a prevalent scaffold that is widely utilized in asymmetric synthesis, π‐stacked polymers, energy materials, and functional parylene coatings that finds broad applications in bio‐ and materials science. In the last few years, [2.2]paracyclophane chemistry has progressed tremendously, enabling the fine‐tuning of its structural and functional properties. This Minireview highlights the most important recent synthetic developments in the selective functionalization of PCP that govern distinct features of planar chirality as well as chiroptical and optoelectronic properties. Special focus is given to the function‐inspired design of [2.2]paracyclophane‐based π‐stacked conjugated materials by transition‐metal‐catalyzed cross‐coupling reactions. Current synthetic challenges, limitations, as well as future research directions and new avenues for advancing cyclophane chemistry are also summarized.