Cargando…
Dealing with missing outcome data in meta‐analysis
Missing data result in less precise and possibly biased effect estimates in single studies. Bias arising from studies with incomplete outcome data is naturally propagated in a meta‐analysis. Conventional analysis using only individuals with available data is adequate when the meta‐analyst can be con...
Autores principales: | Mavridis, Dimitris, White, Ian R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003862/ https://www.ncbi.nlm.nih.gov/pubmed/30991455 http://dx.doi.org/10.1002/jrsm.1349 |
Ejemplares similares
-
Allowing for uncertainty due to missing continuous outcome data in pairwise and network meta‐analysis
por: Mavridis, Dimitris, et al.
Publicado: (2015) -
Allowing for uncertainty due to missing and LOCF imputed outcomes in meta‐analysis
por: Mavridis, Dimitris, et al.
Publicado: (2018) -
Dealing with missing phase and missing data in phylogeny-based analysis
por: Bardel, Claire, et al.
Publicado: (2007) -
Problems in dealing with missing data and informative censoring in clinical trials
por: Shih, Weichung Joseph
Publicado: (2002) -
Imputation methods for missing outcome data in meta-analysis of
clinical trials
por: Higgins, Julian PT, et al.
Publicado: (2008)