Cargando…

Reduced radiation exposure in the cardiac catheterization laboratory with a novel vertical radiation shield

OBJECTIVES: Investigation of novel vertical radiation shield (VRS) in reducing operator radiation exposure. BACKGROUND: Radiation exposure to the operator remains an occupational health hazard in the cardiac catheterization laboratory (CCL). METHODS: A mannequin simulating an operator was placed nea...

Descripción completa

Detalles Bibliográficos
Autores principales: Panetta, Carmelo J., Galbraith, Erin M., Yanavitski, Marat, Koller, Patrick K., Shah, Binita, Iqbal, Sohah, Cigarroa, Joaquin E., Gordon, Gregory, Rao, Sunil V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004044/
https://www.ncbi.nlm.nih.gov/pubmed/31793752
http://dx.doi.org/10.1002/ccd.28629
Descripción
Sumario:OBJECTIVES: Investigation of novel vertical radiation shield (VRS) in reducing operator radiation exposure. BACKGROUND: Radiation exposure to the operator remains an occupational health hazard in the cardiac catheterization laboratory (CCL). METHODS: A mannequin simulating an operator was placed near a computational phantom, simulating a patient. Measurement of dose equivalent and Air Kerma located the angle with the highest radiation, followed by a common magnification (8 in.) and comparison of horizontal radiation absorbing pads (HRAP) with or without VRS with two different: CCL, phantoms, and dosimeters. Physician exposure was subsequently measured prospectively with or without VRS during clinical procedures. RESULTS: Dose equivalent and Air Kerma to the mannequin was highest at left anterior oblique (LAO)‐caudal angle (p < .005). Eight‐inch magnification increased mGray by 86.5% and μSv/min by 12.2% compared to 10‐in. (p < .005). Moving 40 cm from the access site lowered μSv/min by 30% (p < .005). With LAO‐caudal angle and 8‐in. magnification, VRS reduced μSv/min by 59%, (p < .005) in one CCL and μSv by 100% (p = .016) in second CCL in addition to HRAP. Prospective study of 177 procedures with HRAP, found VRS lowered μSv by 41.9% (μSv: 15.2 ± 13.4 vs. 26.2 ± 31.4, p = .001) with no difference in mGray. The difference was significant after multivariate adjustment for specified variables (p < .001). CONCLUSIONS: Operator radiation exposure is significantly reduced utilizing a novel VRS, HRAP, and distance from the X‐ray tube, and consideration of lower magnification and avoiding LAO‐caudal angles to lower radiation for both operator and patient.