Cargando…
Developing a simple method to enhance the generation of cone and rod photoreceptors in pluripotent stem cell‐derived retinal organoids
Cell replacement therapy is a promising treatment for irreversible retinal cell death in diverse diseases such as Stargardt's disease, age‐related macular degeneration, and retinitis pigmentosa. The final impact of all retinal dystrophies is the loss of photoreceptors; hence, there is a pressin...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004057/ https://www.ncbi.nlm.nih.gov/pubmed/31670434 http://dx.doi.org/10.1002/stem.3082 |
_version_ | 1783494651902164992 |
---|---|
author | Zerti, Darin Dorgau, Birthe Felemban, Majed Ghareeb, Ali E. Yu, Min Ding, Yuchun Krasnogor, Natalio Lako, Majlinda |
author_facet | Zerti, Darin Dorgau, Birthe Felemban, Majed Ghareeb, Ali E. Yu, Min Ding, Yuchun Krasnogor, Natalio Lako, Majlinda |
author_sort | Zerti, Darin |
collection | PubMed |
description | Cell replacement therapy is a promising treatment for irreversible retinal cell death in diverse diseases such as Stargardt's disease, age‐related macular degeneration, and retinitis pigmentosa. The final impact of all retinal dystrophies is the loss of photoreceptors; hence, there is a pressing need for research into replacement. Seminal work has shown that a simple three‐dimensional culture system enables differentiation of human pluripotent stem cells to retinal organoids containing large numbers of photoreceptors developing alongside retinal neurons and Müller glia cells in a laminated structure that resembles the native retina. Despite these promising developments, current protocols show different efficiencies across pluripotent stem cells and result in retinal organoids with a mixture of photoreceptor cells at varying maturation states, along with nonphotoreceptor cell types. In this study, we investigated the impact of stage‐specific addition of retinoic acid (RA), 9‐cis‐retinal, 11‐cis‐retinal, levodopa (l‐DOPA), triiodothyronine (T3), and γ‐secretase inhibitor ((2S)‐N‐[(3,5‐Difluorophenyl)acetyl]‐l‐alanyl‐2‐phenyl]glycine1,1‐dimethylethyl ester2L [DAPT]) in the generation of cone and rod photoreceptors. Our results indicate that addition of RA + T3 during days 90 to 120 of differentiation enhanced the generation of rod and S‐cone photoreceptor formation, while the combined addition of DAPT from days 28 to 42 with RA during days 30 to 120 of differentiation led to enhanced generation of L/M‐cones at the expense of rods. l‐DOPA when added together with RA during days 90 to 120 of differentiation also promoted the emergence of S‐cones at the expense of rod photoreceptors. Collectively, these data represent an advance in our ability to direct generation of rod and cone photoreceptors in vitro. |
format | Online Article Text |
id | pubmed-7004057 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-70040572020-02-11 Developing a simple method to enhance the generation of cone and rod photoreceptors in pluripotent stem cell‐derived retinal organoids Zerti, Darin Dorgau, Birthe Felemban, Majed Ghareeb, Ali E. Yu, Min Ding, Yuchun Krasnogor, Natalio Lako, Majlinda Stem Cells Embryonic Stem Cells/Induced Pluripotent Stem Cells Cell replacement therapy is a promising treatment for irreversible retinal cell death in diverse diseases such as Stargardt's disease, age‐related macular degeneration, and retinitis pigmentosa. The final impact of all retinal dystrophies is the loss of photoreceptors; hence, there is a pressing need for research into replacement. Seminal work has shown that a simple three‐dimensional culture system enables differentiation of human pluripotent stem cells to retinal organoids containing large numbers of photoreceptors developing alongside retinal neurons and Müller glia cells in a laminated structure that resembles the native retina. Despite these promising developments, current protocols show different efficiencies across pluripotent stem cells and result in retinal organoids with a mixture of photoreceptor cells at varying maturation states, along with nonphotoreceptor cell types. In this study, we investigated the impact of stage‐specific addition of retinoic acid (RA), 9‐cis‐retinal, 11‐cis‐retinal, levodopa (l‐DOPA), triiodothyronine (T3), and γ‐secretase inhibitor ((2S)‐N‐[(3,5‐Difluorophenyl)acetyl]‐l‐alanyl‐2‐phenyl]glycine1,1‐dimethylethyl ester2L [DAPT]) in the generation of cone and rod photoreceptors. Our results indicate that addition of RA + T3 during days 90 to 120 of differentiation enhanced the generation of rod and S‐cone photoreceptor formation, while the combined addition of DAPT from days 28 to 42 with RA during days 30 to 120 of differentiation led to enhanced generation of L/M‐cones at the expense of rods. l‐DOPA when added together with RA during days 90 to 120 of differentiation also promoted the emergence of S‐cones at the expense of rod photoreceptors. Collectively, these data represent an advance in our ability to direct generation of rod and cone photoreceptors in vitro. John Wiley & Sons, Inc. 2019-10-31 2020-01 /pmc/articles/PMC7004057/ /pubmed/31670434 http://dx.doi.org/10.1002/stem.3082 Text en ©2019 The Authors. stem cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2019 This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Embryonic Stem Cells/Induced Pluripotent Stem Cells Zerti, Darin Dorgau, Birthe Felemban, Majed Ghareeb, Ali E. Yu, Min Ding, Yuchun Krasnogor, Natalio Lako, Majlinda Developing a simple method to enhance the generation of cone and rod photoreceptors in pluripotent stem cell‐derived retinal organoids |
title | Developing a simple method to enhance the generation of cone and rod photoreceptors in pluripotent stem cell‐derived retinal organoids |
title_full | Developing a simple method to enhance the generation of cone and rod photoreceptors in pluripotent stem cell‐derived retinal organoids |
title_fullStr | Developing a simple method to enhance the generation of cone and rod photoreceptors in pluripotent stem cell‐derived retinal organoids |
title_full_unstemmed | Developing a simple method to enhance the generation of cone and rod photoreceptors in pluripotent stem cell‐derived retinal organoids |
title_short | Developing a simple method to enhance the generation of cone and rod photoreceptors in pluripotent stem cell‐derived retinal organoids |
title_sort | developing a simple method to enhance the generation of cone and rod photoreceptors in pluripotent stem cell‐derived retinal organoids |
topic | Embryonic Stem Cells/Induced Pluripotent Stem Cells |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004057/ https://www.ncbi.nlm.nih.gov/pubmed/31670434 http://dx.doi.org/10.1002/stem.3082 |
work_keys_str_mv | AT zertidarin developingasimplemethodtoenhancethegenerationofconeandrodphotoreceptorsinpluripotentstemcellderivedretinalorganoids AT dorgaubirthe developingasimplemethodtoenhancethegenerationofconeandrodphotoreceptorsinpluripotentstemcellderivedretinalorganoids AT felembanmajed developingasimplemethodtoenhancethegenerationofconeandrodphotoreceptorsinpluripotentstemcellderivedretinalorganoids AT ghareebalie developingasimplemethodtoenhancethegenerationofconeandrodphotoreceptorsinpluripotentstemcellderivedretinalorganoids AT yumin developingasimplemethodtoenhancethegenerationofconeandrodphotoreceptorsinpluripotentstemcellderivedretinalorganoids AT dingyuchun developingasimplemethodtoenhancethegenerationofconeandrodphotoreceptorsinpluripotentstemcellderivedretinalorganoids AT krasnogornatalio developingasimplemethodtoenhancethegenerationofconeandrodphotoreceptorsinpluripotentstemcellderivedretinalorganoids AT lakomajlinda developingasimplemethodtoenhancethegenerationofconeandrodphotoreceptorsinpluripotentstemcellderivedretinalorganoids |