Cargando…
FastEmbed: Predicting vulnerability exploitation possibility based on ensemble machine learning algorithm
In recent years, the number of vulnerabilities discovered and publicly disclosed has shown a sharp upward trend. However, the value of exploitation of vulnerabilities varies for attackers, considering that only a small fraction of vulnerabilities are exploited. Therefore, the realization of quick ex...
Autores principales: | Fang, Yong, Liu, Yongcheng, Huang, Cheng, Liu, Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004314/ https://www.ncbi.nlm.nih.gov/pubmed/32027693 http://dx.doi.org/10.1371/journal.pone.0228439 |
Ejemplares similares
-
Emb@razada : destejiendo mitos /
por: Braandengurg, Graciela
Publicado: (2014) -
Prediction of successful aging using ensemble machine learning algorithms
por: Asghari Varzaneh, Zahra, et al.
Publicado: (2022) -
Hands-on ensemble learning with R: a beginner's guide to combining the power of machine learning algorithms using ensemble techniques
por: Tattar, Prabhanjan
Publicado: (2018) -
Margin-Based Pareto Ensemble Pruning: An Ensemble Pruning Algorithm That Learns to Search Optimized Ensembles
por: Hu, Ruihan, et al.
Publicado: (2019) -
Accel-Align: a fast sequence mapper and aligner based on the seed–embed–extend method
por: Yan, Yiqing, et al.
Publicado: (2021)