Cargando…

A multi-feature image retrieval scheme for pulmonary nodule diagnosis

Deep analysis of radiographic images can quantify the extent of intra-tumoral heterogeneity for personalized medicine. In this paper, we propose a novel content-based multi-feature image retrieval (CBMFIR) scheme to discriminate pulmonary nodules benign or malignant. Two types of features are applie...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Guohui, Qiu, Min, Zhang, Kuixing, Li, Ming, Wei, Dejian, Li, Yanjun, Liu, Peiyu, Cao, Hui, Xing, Mengmeng, Yang, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer Health 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004710/
https://www.ncbi.nlm.nih.gov/pubmed/31977863
http://dx.doi.org/10.1097/MD.0000000000018724
_version_ 1783494784830144512
author Wei, Guohui
Qiu, Min
Zhang, Kuixing
Li, Ming
Wei, Dejian
Li, Yanjun
Liu, Peiyu
Cao, Hui
Xing, Mengmeng
Yang, Feng
author_facet Wei, Guohui
Qiu, Min
Zhang, Kuixing
Li, Ming
Wei, Dejian
Li, Yanjun
Liu, Peiyu
Cao, Hui
Xing, Mengmeng
Yang, Feng
author_sort Wei, Guohui
collection PubMed
description Deep analysis of radiographic images can quantify the extent of intra-tumoral heterogeneity for personalized medicine. In this paper, we propose a novel content-based multi-feature image retrieval (CBMFIR) scheme to discriminate pulmonary nodules benign or malignant. Two types of features are applied to represent the pulmonary nodules. With each type of features, a single-feature distance metric model is proposed to measure the similarity of pulmonary nodules. And then, multiple single-feature distance metric models learned from different types of features are combined to a multi-feature distance metric model. Finally, the learned multi-feature distance metric is used to construct a content-based image retrieval (CBIR) scheme to assist the doctors in diagnosis of pulmonary nodules. The classification accuracy and retrieval accuracy are used to evaluate the performance of the scheme. The classification accuracy is 0.955 ± 0.010, and the retrieval accuracies outperform the comparison methods. The proposed CBMFIR scheme is effective in diagnosis of pulmonary nodules. Our method can better integrate multiple types of features from pulmonary nodules.
format Online
Article
Text
id pubmed-7004710
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Wolters Kluwer Health
record_format MEDLINE/PubMed
spelling pubmed-70047102020-02-18 A multi-feature image retrieval scheme for pulmonary nodule diagnosis Wei, Guohui Qiu, Min Zhang, Kuixing Li, Ming Wei, Dejian Li, Yanjun Liu, Peiyu Cao, Hui Xing, Mengmeng Yang, Feng Medicine (Baltimore) 6800 Deep analysis of radiographic images can quantify the extent of intra-tumoral heterogeneity for personalized medicine. In this paper, we propose a novel content-based multi-feature image retrieval (CBMFIR) scheme to discriminate pulmonary nodules benign or malignant. Two types of features are applied to represent the pulmonary nodules. With each type of features, a single-feature distance metric model is proposed to measure the similarity of pulmonary nodules. And then, multiple single-feature distance metric models learned from different types of features are combined to a multi-feature distance metric model. Finally, the learned multi-feature distance metric is used to construct a content-based image retrieval (CBIR) scheme to assist the doctors in diagnosis of pulmonary nodules. The classification accuracy and retrieval accuracy are used to evaluate the performance of the scheme. The classification accuracy is 0.955 ± 0.010, and the retrieval accuracies outperform the comparison methods. The proposed CBMFIR scheme is effective in diagnosis of pulmonary nodules. Our method can better integrate multiple types of features from pulmonary nodules. Wolters Kluwer Health 2020-01-24 /pmc/articles/PMC7004710/ /pubmed/31977863 http://dx.doi.org/10.1097/MD.0000000000018724 Text en Copyright © 2020 the Author(s). Published by Wolters Kluwer Health, Inc. http://creativecommons.org/licenses/by-nc/4.0 This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc/4.0
spellingShingle 6800
Wei, Guohui
Qiu, Min
Zhang, Kuixing
Li, Ming
Wei, Dejian
Li, Yanjun
Liu, Peiyu
Cao, Hui
Xing, Mengmeng
Yang, Feng
A multi-feature image retrieval scheme for pulmonary nodule diagnosis
title A multi-feature image retrieval scheme for pulmonary nodule diagnosis
title_full A multi-feature image retrieval scheme for pulmonary nodule diagnosis
title_fullStr A multi-feature image retrieval scheme for pulmonary nodule diagnosis
title_full_unstemmed A multi-feature image retrieval scheme for pulmonary nodule diagnosis
title_short A multi-feature image retrieval scheme for pulmonary nodule diagnosis
title_sort multi-feature image retrieval scheme for pulmonary nodule diagnosis
topic 6800
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004710/
https://www.ncbi.nlm.nih.gov/pubmed/31977863
http://dx.doi.org/10.1097/MD.0000000000018724
work_keys_str_mv AT weiguohui amultifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT qiumin amultifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT zhangkuixing amultifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT liming amultifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT weidejian amultifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT liyanjun amultifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT liupeiyu amultifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT caohui amultifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT xingmengmeng amultifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT yangfeng amultifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT weiguohui multifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT qiumin multifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT zhangkuixing multifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT liming multifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT weidejian multifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT liyanjun multifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT liupeiyu multifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT caohui multifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT xingmengmeng multifeatureimageretrievalschemeforpulmonarynodulediagnosis
AT yangfeng multifeatureimageretrievalschemeforpulmonarynodulediagnosis