Cargando…
Technical Principles of Dual-Energy Cone Beam Computed Tomography and Clinical Applications for Radiation Therapy
PURPOSE: Medical imaging is an indispensable tool in radiotherapy for dose planning, image guidance and treatment monitoring. Cone beam CT (CBCT) is a low dose imaging technique with high spatial resolution capability as a direct by-product of using flat-panel detectors. However, certain issues such...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004939/ https://www.ncbi.nlm.nih.gov/pubmed/32051885 http://dx.doi.org/10.1016/j.adro.2019.07.013 |
Sumario: | PURPOSE: Medical imaging is an indispensable tool in radiotherapy for dose planning, image guidance and treatment monitoring. Cone beam CT (CBCT) is a low dose imaging technique with high spatial resolution capability as a direct by-product of using flat-panel detectors. However, certain issues such as x-ray scatter, beam hardening and other artifacts limit its utility to the verification of patient positioning using image-guided radiotherapy. METHODS AND MATERIALS: Dual-energy (DE)-CBCT has recently demonstrated promise as an improved tool for tumor visualization in benchtop applications. It has the potential to improve soft-tissue contrast and reduce artifacts caused by beam hardening and metal. In this review, the practical aspects of developing a DE-CBCT based clinical and technical workflow are presented based on existing DE-CBCT literature and concepts adapted from the well-established library of work in DE-CT. Furthermore, the potential applications of DE-CBCT on its future role in radiotherapy are discussed. RESULTS AND CONCLUSIONS: Based on current literature and an investigation of future applications, there is a clear potential for DE-CBCT technologies to be incorporated into radiotherapy. The applications of DE-CBCT include (but are not limited to): adaptive radiotherapy, brachytherapy, proton therapy, radiomics and theranostics. |
---|