Cargando…
The hidden information in patient-reported outcomes and clinician-assessed outcomes: multiple sclerosis as a proof of concept of a machine learning approach
Machine learning (ML) applied to patient-reported (PROs) and clinical-assessed outcomes (CAOs) could favour a more predictive and personalized medicine. Our aim was to confirm the important role of applying ML to PROs and CAOs of people with relapsing-remitting (RR) and secondary progressive (SP) fo...
Autores principales: | Brichetto, Giampaolo, Monti Bragadin, Margherita, Fiorini, Samuele, Battaglia, Mario Alberto, Konrad, Giovanna, Ponzio, Michela, Pedullà, Ludovico, Verri, Alessandro, Barla, Annalisa, Tacchino, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005074/ https://www.ncbi.nlm.nih.gov/pubmed/31659583 http://dx.doi.org/10.1007/s10072-019-04093-x |
Ejemplares similares
-
Focus on neglected features of cognitive rehabilitation in MS:
Setting and mode of the treatment
por: Podda, Jessica, et al.
Publicado: (2020) -
Spatial constraints and cognitive fatigue affect motor imagery of walking in people with multiple sclerosis
por: Podda, Jessica, et al.
Publicado: (2020) -
Motor imagery has a priming effect on motor execution in people with multiple sclerosis
por: Tacchino, Andrea, et al.
Publicado: (2023) -
Development and psychometric properties of a self-assessed knowledge questionnaire for caregivers of people with multiple sclerosis (CareKoMS): a cross-sectional study
por: Podda, Jessica, et al.
Publicado: (2023) -
Cognitive rehabilitation in multiple sclerosis: Three digital ingredients to address current and future priorities
por: Tacchino, Andrea, et al.
Publicado: (2023)