Cargando…
Explicit measurement of multi-tracer arterial input function for PET imaging using blood sampling spectroscopy
BACKGROUND: Conventional PET imaging has usually been limited to a single tracer per scan. We propose a new technique for multi-tracer PET imaging that uses dynamic imaging and multi-tracer compartment modeling including an explicitly derived arterial input function (AIF) for each tracer using blood...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005194/ https://www.ncbi.nlm.nih.gov/pubmed/32030519 http://dx.doi.org/10.1186/s40658-020-0277-4 |
Sumario: | BACKGROUND: Conventional PET imaging has usually been limited to a single tracer per scan. We propose a new technique for multi-tracer PET imaging that uses dynamic imaging and multi-tracer compartment modeling including an explicitly derived arterial input function (AIF) for each tracer using blood sampling spectroscopy. For that purpose, at least one of the co-injected tracers must be based on a non-pure positron emitter. METHODS: The proposed technique was validated in vivo by performing cardiac PET/CT studies on three healthy pigs injected with (18)FDG (viability) and (68)Ga-DOTA (myocardial blood flow and extracellular volume fraction) during the same acquisition. Blood samples were collected during the PET scan, and separated AIF for each tracer was obtained by spectroscopic analysis. A multi-tracer compartment model was applied to the myocardium in order to obtain the distribution of each tracer at the end of the PET scan. Relative activities of both tracers and tracer uptake were obtained and compared with the values obtained by ex vivo analysis of excised myocardial tissue segments. RESULTS: A high correlation was obtained between multi-tracer PET results, and those obtained from ex vivo analysis ((18)FDG relative activity: r = 0.95, p < 0.0001; SUV: r = 0.98, p < 0.0001). CONCLUSIONS: The proposed technique allows performing PET scans with two tracers during the same acquisition obtaining separate information for each tracer. |
---|