Cargando…
Evaluating depression with multimodal wristband-type wearable device: screening and assessing patient severity utilizing machine-learning
OBJECTIVE: We aimed to develop a machine learning algorithm to screen for depression and assess severity based on data from wearable devices. METHODS: We used a wearable device that calculates steps, energy expenditure, body movement, sleep time, heart rate, skin temperature, and ultraviolet light e...
Autores principales: | Tazawa, Yuuki, Liang, Kuo-ching, Yoshimura, Michitaka, Kitazawa, Momoko, Kaise, Yuriko, Takamiya, Akihiro, Kishi, Aiko, Horigome, Toshiro, Mitsukura, Yasue, Mimura, Masaru, Kishimoto, Taishiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005437/ https://www.ncbi.nlm.nih.gov/pubmed/32055728 http://dx.doi.org/10.1016/j.heliyon.2020.e03274 |
Ejemplares similares
-
Speech Quality Feature Analysis for Classification of Depression and Dementia Patients
por: Sumali, Brian, et al.
Publicado: (2020) -
Development of medical device software for the screening and assessment of depression severity using data collected from a wristband-type wearable device: SWIFT study protocol
por: Kishimoto, Taishiro, et al.
Publicado: (2022) -
The project for objective measures using computational psychiatry technology (PROMPT): Rationale, design, and methodology
por: Kishimoto, Taishiro, et al.
Publicado: (2020) -
Characteristics of single-channel electroencephalogram in depression during conversation with noise reduction technology
por: Mitsukura, Yasue, et al.
Publicado: (2022) -
Using speech recognition technology to investigate the association between timing-related speech features and depression severity
por: Yamamoto, Mao, et al.
Publicado: (2020)