Cargando…
Numerical Cognition Based on Precise Counting with a Single Spiking Neuron
Insects are able to solve basic numerical cognition tasks. We show that estimation of numerosity can be realized and learned by a single spiking neuron with an appropriate synaptic plasticity rule. This model can be efficiently trained to detect arbitrary spatiotemporal spike patterns on a noisy and...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005464/ https://www.ncbi.nlm.nih.gov/pubmed/32058964 http://dx.doi.org/10.1016/j.isci.2020.100852 |
Sumario: | Insects are able to solve basic numerical cognition tasks. We show that estimation of numerosity can be realized and learned by a single spiking neuron with an appropriate synaptic plasticity rule. This model can be efficiently trained to detect arbitrary spatiotemporal spike patterns on a noisy and dynamic background with high precision and low variance. When put to test in a task that requires counting of visual concepts in a static image it required considerably less training epochs than a convolutional neural network to achieve equal performance. When mimicking a behavioral task in free-flying bees that requires numerical cognition, the model reaches a similar success rate in making correct decisions. We propose that using action potentials to represent basic numerical concepts with a single spiking neuron is beneficial for organisms with small brains and limited neuronal resources. |
---|