Cargando…
Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: A multi-site study
The imaging and subsequent accurate diagnosis of paediatric brain tumours presents a radiological challenge, with magnetic resonance imaging playing a key role in providing tumour specific imaging information. Diffusion weighted and perfusion imaging are commonly used to aid the non-invasive diagnos...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005468/ https://www.ncbi.nlm.nih.gov/pubmed/32032817 http://dx.doi.org/10.1016/j.nicl.2020.102172 |
_version_ | 1783494942032658432 |
---|---|
author | Grist, James T. Withey, Stephanie MacPherson, Lesley Oates, Adam Powell, Stephen Novak, Jan Abernethy, Laurence Pizer, Barry Grundy, Richard Bailey, Simon Mitra, Dipayan Arvanitis, Theodoros N. Auer, Dorothee P. Avula, Shivaram Peet, Andrew C |
author_facet | Grist, James T. Withey, Stephanie MacPherson, Lesley Oates, Adam Powell, Stephen Novak, Jan Abernethy, Laurence Pizer, Barry Grundy, Richard Bailey, Simon Mitra, Dipayan Arvanitis, Theodoros N. Auer, Dorothee P. Avula, Shivaram Peet, Andrew C |
author_sort | Grist, James T. |
collection | PubMed |
description | The imaging and subsequent accurate diagnosis of paediatric brain tumours presents a radiological challenge, with magnetic resonance imaging playing a key role in providing tumour specific imaging information. Diffusion weighted and perfusion imaging are commonly used to aid the non-invasive diagnosis of children's brain tumours, but are usually evaluated by expert qualitative review. Quantitative studies are mainly single centre and single modality. The aim of this work was to combine multi-centre diffusion and perfusion imaging, with machine learning, to develop machine learning based classifiers to discriminate between three common paediatric tumour types. The results show that diffusion and perfusion weighted imaging of both the tumour and whole brain provide significant features which differ between tumour types, and that combining these features gives the optimal machine learning classifier with >80% predictive precision. This work represents a step forward to aid in the non-invasive diagnosis of paediatric brain tumours, using advanced clinical imaging. |
format | Online Article Text |
id | pubmed-7005468 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-70054682020-02-13 Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: A multi-site study Grist, James T. Withey, Stephanie MacPherson, Lesley Oates, Adam Powell, Stephen Novak, Jan Abernethy, Laurence Pizer, Barry Grundy, Richard Bailey, Simon Mitra, Dipayan Arvanitis, Theodoros N. Auer, Dorothee P. Avula, Shivaram Peet, Andrew C Neuroimage Clin Regular Article The imaging and subsequent accurate diagnosis of paediatric brain tumours presents a radiological challenge, with magnetic resonance imaging playing a key role in providing tumour specific imaging information. Diffusion weighted and perfusion imaging are commonly used to aid the non-invasive diagnosis of children's brain tumours, but are usually evaluated by expert qualitative review. Quantitative studies are mainly single centre and single modality. The aim of this work was to combine multi-centre diffusion and perfusion imaging, with machine learning, to develop machine learning based classifiers to discriminate between three common paediatric tumour types. The results show that diffusion and perfusion weighted imaging of both the tumour and whole brain provide significant features which differ between tumour types, and that combining these features gives the optimal machine learning classifier with >80% predictive precision. This work represents a step forward to aid in the non-invasive diagnosis of paediatric brain tumours, using advanced clinical imaging. Elsevier 2020-01-23 /pmc/articles/PMC7005468/ /pubmed/32032817 http://dx.doi.org/10.1016/j.nicl.2020.102172 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Regular Article Grist, James T. Withey, Stephanie MacPherson, Lesley Oates, Adam Powell, Stephen Novak, Jan Abernethy, Laurence Pizer, Barry Grundy, Richard Bailey, Simon Mitra, Dipayan Arvanitis, Theodoros N. Auer, Dorothee P. Avula, Shivaram Peet, Andrew C Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: A multi-site study |
title | Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: A multi-site study |
title_full | Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: A multi-site study |
title_fullStr | Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: A multi-site study |
title_full_unstemmed | Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: A multi-site study |
title_short | Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: A multi-site study |
title_sort | distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: a multi-site study |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005468/ https://www.ncbi.nlm.nih.gov/pubmed/32032817 http://dx.doi.org/10.1016/j.nicl.2020.102172 |
work_keys_str_mv | AT gristjamest distinguishingbetweenpaediatricbraintumourtypesusingmultiparametricmagneticresonanceimagingandmachinelearningamultisitestudy AT witheystephanie distinguishingbetweenpaediatricbraintumourtypesusingmultiparametricmagneticresonanceimagingandmachinelearningamultisitestudy AT macphersonlesley distinguishingbetweenpaediatricbraintumourtypesusingmultiparametricmagneticresonanceimagingandmachinelearningamultisitestudy AT oatesadam distinguishingbetweenpaediatricbraintumourtypesusingmultiparametricmagneticresonanceimagingandmachinelearningamultisitestudy AT powellstephen distinguishingbetweenpaediatricbraintumourtypesusingmultiparametricmagneticresonanceimagingandmachinelearningamultisitestudy AT novakjan distinguishingbetweenpaediatricbraintumourtypesusingmultiparametricmagneticresonanceimagingandmachinelearningamultisitestudy AT abernethylaurence distinguishingbetweenpaediatricbraintumourtypesusingmultiparametricmagneticresonanceimagingandmachinelearningamultisitestudy AT pizerbarry distinguishingbetweenpaediatricbraintumourtypesusingmultiparametricmagneticresonanceimagingandmachinelearningamultisitestudy AT grundyrichard distinguishingbetweenpaediatricbraintumourtypesusingmultiparametricmagneticresonanceimagingandmachinelearningamultisitestudy AT baileysimon distinguishingbetweenpaediatricbraintumourtypesusingmultiparametricmagneticresonanceimagingandmachinelearningamultisitestudy AT mitradipayan distinguishingbetweenpaediatricbraintumourtypesusingmultiparametricmagneticresonanceimagingandmachinelearningamultisitestudy AT arvanitistheodorosn distinguishingbetweenpaediatricbraintumourtypesusingmultiparametricmagneticresonanceimagingandmachinelearningamultisitestudy AT auerdorotheep distinguishingbetweenpaediatricbraintumourtypesusingmultiparametricmagneticresonanceimagingandmachinelearningamultisitestudy AT avulashivaram distinguishingbetweenpaediatricbraintumourtypesusingmultiparametricmagneticresonanceimagingandmachinelearningamultisitestudy AT peetandrewc distinguishingbetweenpaediatricbraintumourtypesusingmultiparametricmagneticresonanceimagingandmachinelearningamultisitestudy |