Cargando…
Machine-Learning Studies on Spin Models
With the recent developments in machine learning, Carrasquilla and Melko have proposed a paradigm that is complementary to the conventional approach for the study of spin models. As an alternative to investigating the thermal average of macroscopic physical quantities, they have used the spin config...
Autores principales: | Shiina, Kenta, Mori, Hiroyuki, Okabe, Yutaka, Lee, Hwee Kuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005704/ https://www.ncbi.nlm.nih.gov/pubmed/32034178 http://dx.doi.org/10.1038/s41598-020-58263-5 |
Ejemplares similares
-
Inverse renormalization group based on image super-resolution using deep convolutional networks
por: Shiina, Kenta, et al.
Publicado: (2021) -
Accelerated spin dynamics using deep learning corrections
por: Park, Sojeong, et al.
Publicado: (2020) -
Machine-learning Approach for the Development of a Novel Predictive Model for the Diagnosis of Hepatocellular Carcinoma
por: Sato, Masaya, et al.
Publicado: (2019) -
Machine Learning Magnetic Parameters from Spin Configurations
por: Wang, Dingchen, et al.
Publicado: (2020) -
Machine learning as an improved estimator for magnetization curve and spin gap
por: Nakamura, Tota
Publicado: (2020)