Cargando…
Weighted persistent homology for biomolecular data analysis
In this paper, we systematically review weighted persistent homology (WPH) models and their applications in biomolecular data analysis. Essentially, the weight value, which reflects physical, chemical and biological properties, can be assigned to vertices (atom centers), edges (bonds), or higher ord...
Autores principales: | Meng, Zhenyu, Anand, D. Vijay, Lu, Yunpeng, Wu, Jie, Xia, Kelin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005716/ https://www.ncbi.nlm.nih.gov/pubmed/32034168 http://dx.doi.org/10.1038/s41598-019-55660-3 |
Ejemplares similares
-
Weighted persistent homology for osmolyte molecular aggregation and hydrogen-bonding network analysis
por: Anand, D. Vijay, et al.
Publicado: (2020) -
Weighted-persistent-homology-based machine learning for RNA flexibility analysis
por: Pun, Chi Seng, et al.
Publicado: (2020) -
Hodge theory-based biomolecular data analysis
por: Wei, Ronald Koh Joon, et al.
Publicado: (2022) -
Persistent spectral–based machine learning (PerSpect ML) for protein-ligand binding affinity prediction
por: Meng, Zhenyu, et al.
Publicado: (2021) -
Biomolecular Topology: Modelling and Analysis
por: Liu, Jian, et al.
Publicado: (2022)