Cargando…

Finely tuned eye movements enhance visual acuity

High visual acuity is essential for many tasks, from recognizing distant friends to driving a car. While much is known about how the eye’s optics and anatomy contribute to spatial resolution, possible influences from eye movements are rarely considered. Yet humans incessantly move their eyes, and it...

Descripción completa

Detalles Bibliográficos
Autores principales: Intoy, Janis, Rucci, Michele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005897/
https://www.ncbi.nlm.nih.gov/pubmed/32034165
http://dx.doi.org/10.1038/s41467-020-14616-2
Descripción
Sumario:High visual acuity is essential for many tasks, from recognizing distant friends to driving a car. While much is known about how the eye’s optics and anatomy contribute to spatial resolution, possible influences from eye movements are rarely considered. Yet humans incessantly move their eyes, and it has long been suggested that oculomotor activity enhances fine pattern vision. Here we examine the role of eye movements in the most common assessment of visual acuity, the Snellen eye chart. By precisely localizing gaze and actively controlling retinal stimulation, we show that fixational behavior improves acuity by more than 0.15 logMAR, at least 2 lines of the Snellen chart. This improvement is achieved by adapting both microsaccades and ocular drifts to precisely position the image on the retina and adjust its motion. These findings show that humans finely tune their fixational eye movements so that they greatly contribute to normal visual acuity.