Cargando…

Seed germination characteristics of invasive Spartina alterniflora Loisel in Japan: implications for its effective management

Spartina alterniflora, intentionally or unintentionally introduced worldwide, has adversely impacted local Japanese ecosystems. Thus, prediction of future distributions of S. alterniflora and its management are required. Local population expansion after establishment depends heavily on asexual (clon...

Descripción completa

Detalles Bibliográficos
Autores principales: Hayasaka, Daisuke, Nakagawa, Moe, Maebara, Yu, Kurazono, Tomohiro, Hashimoto, Koya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005899/
https://www.ncbi.nlm.nih.gov/pubmed/32034206
http://dx.doi.org/10.1038/s41598-020-58879-7
Descripción
Sumario:Spartina alterniflora, intentionally or unintentionally introduced worldwide, has adversely impacted local Japanese ecosystems. Thus, prediction of future distributions of S. alterniflora and its management are required. Local population expansion after establishment depends heavily on asexual (clonal) reproduction, whereas sexual (seed) reproduction is one of the critical factors for estimating invasion success and the likelihood of colonization to new habitats. However, knowledge about the germination characteristics of S. alterniflora is lacking. Here, we report the environmental conditions suitable for germination of S. alterniflora, under variable conditions of cold stratification periods (0, 4, 8 weeks), temperature (constant, alternating temperature), light (light/dark, dark), and oxygen (aerobic, anaerobic). Cumulative germination rate of S. alterniflora increased with an increasing period of cold stratification. Its seeds clearly preferred aerobic conditions to germinate. Also, the germination rate was higher under alternating temperature than under constant temperature regardless of light and oxygen conditions in any cold stratification period. However, long-term cold stratification, alternating temperature, and aerobic conditions were more important for germination of S. alterniflora than light. Removal of soil seed banks within 8 weeks of cold stratification after seed dispersals with matured seeds may be effective approaches for disrupting the germination of S. alterniflora.