Cargando…
Less Is More: Dilution Enhances Optical and Electrical Performance of a TADF Exciplex
[Image: see text] A surprising yet highly practical approach to improve the performance of a TADF exciplex blend is reported. Using the TSBPA donor and PO-T2T acceptor to form an exciplex, we are able to blue shift the emission, increase PLQY from 58 to 80%, and increase the device EQE from 14.8 to...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005938/ https://www.ncbi.nlm.nih.gov/pubmed/30726086 http://dx.doi.org/10.1021/acs.jpclett.8b03646 |
Sumario: | [Image: see text] A surprising yet highly practical approach to improve the performance of a TADF exciplex blend is reported. Using the TSBPA donor and PO-T2T acceptor to form an exciplex, we are able to blue shift the emission, increase PLQY from 58 to 80%, and increase the device EQE from 14.8 to 19.2% by simply diluting the exciplex with an inert high triplet energy host material—here either UGH-3 or DPEPO. These effects are explained in terms of an increasing donor–acceptor distance and associated charge separation, while different behaviors observed in the different hosts are attributed to different energy barriers to electron transfer through the host. We expect that the observed performance-enhancing effects of dilution will be general to different exciplex blends and host materials and offer a new way to optimize the electrical properties of exciplex emission layers with narrow blue emission. |
---|