Cargando…

Charting the landscape of graphical displays for meta-analysis and systematic reviews: a comprehensive review, taxonomy, and feature analysis

BACKGROUND: Data-visualization methods are essential to explore and communicate meta-analytic data and results. With a large number of novel graphs proposed quite recently, a comprehensive, up-to-date overview of available graphing options for meta-analysis is unavailable. METHODS: We applied a mult...

Descripción completa

Detalles Bibliográficos
Autores principales: Kossmeier, Michael, Tran, Ulrich S., Voracek, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006175/
https://www.ncbi.nlm.nih.gov/pubmed/32028897
http://dx.doi.org/10.1186/s12874-020-0911-9
Descripción
Sumario:BACKGROUND: Data-visualization methods are essential to explore and communicate meta-analytic data and results. With a large number of novel graphs proposed quite recently, a comprehensive, up-to-date overview of available graphing options for meta-analysis is unavailable. METHODS: We applied a multi-tiered search strategy to find the meta-analytic graphs proposed and introduced so far. We checked more than 150 retrievable textbooks on research synthesis methodology cover to cover, six different software programs regularly used for meta-analysis, and the entire content of two leading journals on research synthesis. In addition, we conducted Google Scholar and Google image searches and cited-reference searches of prior reviews of the topic. Retrieved graphs were categorized into a taxonomy encompassing 11 main classes, evaluated according to 24 graph-functionality features, and individually presented and described with explanatory vignettes. RESULTS: We ascertained more than 200 different graphs and graph variants used to visualize meta-analytic data. One half of these have accrued within the past 10 years alone. The most prevalent classes were graphs for network meta-analysis (45 displays), graphs showing combined effect(s) only (26), funnel plot-like displays (24), displays showing more than one outcome per study (19), robustness, outlier and influence diagnostics (15), study selection and p-value based displays (15), and forest plot-like displays (14). The majority of graphs (130, 62.5%) possessed a unique combination of graph features. CONCLUSIONS: The rich and diverse set of available meta-analytic graphs offers a variety of options to display many different aspects of meta-analyses. This comprehensive overview of available graphs allows researchers to make better-informed decisions on which graphs suit their needs and therefore facilitates using the meta-analytic tool kit of graphs to its full potential. It also constitutes a roadmap for a goal-driven development of further graphical displays for research synthesis.