Cargando…
Activation Mechanism of Protein Kinase B by DNA-dependent Protein Kinase Involved in the DNA Repair System
DNA-dependent protein kinase (DNA-PK) is involved in joining DNA double-strand breaks induced by ionizing radiation or V(D)J recombination and is activated by DNA ends and composed of a DNA binding subunit, Ku, and a catalytic subunit, DNA-PKcs. It has been suggested that DNA-PK might be 2(nd) upstr...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006269/ https://www.ncbi.nlm.nih.gov/pubmed/32038792 http://dx.doi.org/10.5487/TR.2008.24.3.175 |
Sumario: | DNA-dependent protein kinase (DNA-PK) is involved in joining DNA double-strand breaks induced by ionizing radiation or V(D)J recombination and is activated by DNA ends and composed of a DNA binding subunit, Ku, and a catalytic subunit, DNA-PKcs. It has been suggested that DNA-PK might be 2(nd) upstream kinase for protein kinase B (PKB). In this report, we showed that Ser473 phosphorylation in the hydrophobic-motif of PKB is blocked in DNA-PK knockout mouse embryonic fibroblast cells (MEFs) following insulin stimulation, while there is no effect on Ser473 phosphorylation in DNA-PK wild type MEF cells. The observation is further confirmed in human glioblastoma cells expressing a mutant form of DNA-PK (M059J) and a wild-type of DNA-PK (M059K), indicating that DNA-PK is indeed important for PKB activation. Furthermore, the treatment of cells with doxorubicin, DNA-damage inducing agent, leads to PKB phosphorylation on Ser473 in control MEF cells while there is no response in DNA-PK knockout MEF cells. Together, these results proposed that DNA-PK has a potential role in insulin signaling as well as DNA-repair signaling pathway. |
---|