Cargando…

(7)Li NMR Chemical Shift Imaging To Detect Microstructural Growth of Lithium in All-Solid-State Batteries

[Image: see text] All-solid-state batteries potentially offer safe, high-energy-density electrochemical energy storage, yet are plagued with issues surrounding Li microstructural growth and subsequent cell death. We use (7)Li NMR chemical shift imaging and electron microscopy to track Li microstruct...

Descripción completa

Detalles Bibliográficos
Autores principales: Marbella, Lauren E., Zekoll, Stefanie, Kasemchainan, Jitti, Emge, Steffen P., Bruce, Peter G., Grey, Clare P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006347/
https://www.ncbi.nlm.nih.gov/pubmed/32051658
http://dx.doi.org/10.1021/acs.chemmater.8b04875
_version_ 1783495126502342656
author Marbella, Lauren E.
Zekoll, Stefanie
Kasemchainan, Jitti
Emge, Steffen P.
Bruce, Peter G.
Grey, Clare P.
author_facet Marbella, Lauren E.
Zekoll, Stefanie
Kasemchainan, Jitti
Emge, Steffen P.
Bruce, Peter G.
Grey, Clare P.
author_sort Marbella, Lauren E.
collection PubMed
description [Image: see text] All-solid-state batteries potentially offer safe, high-energy-density electrochemical energy storage, yet are plagued with issues surrounding Li microstructural growth and subsequent cell death. We use (7)Li NMR chemical shift imaging and electron microscopy to track Li microstructural growth in the garnet-type solid electrolyte, Li(6.5)La(3)Zr(1.5)Ta(0.5)O(12). Here, we follow the early stages of Li microstructural growth during galvanostatic cycling, from the formation of Li on the electrode surface to dendritic Li connecting both electrodes in symmetrical cells, and correlate these changes with alterations observed in the voltage profiles during cycling and impedance measurements. During these experiments, we observe transformations at both the stripping and plating interfaces, indicating heterogeneities in both Li removal and deposition. At low current densities, (7)Li magnetic resonance imaging detects the formation of Li microstructures in cells before short-circuits are observed and allows changes in the electrochemical profiles to be rationalized.
format Online
Article
Text
id pubmed-7006347
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-70063472020-02-10 (7)Li NMR Chemical Shift Imaging To Detect Microstructural Growth of Lithium in All-Solid-State Batteries Marbella, Lauren E. Zekoll, Stefanie Kasemchainan, Jitti Emge, Steffen P. Bruce, Peter G. Grey, Clare P. Chem Mater [Image: see text] All-solid-state batteries potentially offer safe, high-energy-density electrochemical energy storage, yet are plagued with issues surrounding Li microstructural growth and subsequent cell death. We use (7)Li NMR chemical shift imaging and electron microscopy to track Li microstructural growth in the garnet-type solid electrolyte, Li(6.5)La(3)Zr(1.5)Ta(0.5)O(12). Here, we follow the early stages of Li microstructural growth during galvanostatic cycling, from the formation of Li on the electrode surface to dendritic Li connecting both electrodes in symmetrical cells, and correlate these changes with alterations observed in the voltage profiles during cycling and impedance measurements. During these experiments, we observe transformations at both the stripping and plating interfaces, indicating heterogeneities in both Li removal and deposition. At low current densities, (7)Li magnetic resonance imaging detects the formation of Li microstructures in cells before short-circuits are observed and allows changes in the electrochemical profiles to be rationalized. American Chemical Society 2019-04-05 2019-04-23 /pmc/articles/PMC7006347/ /pubmed/32051658 http://dx.doi.org/10.1021/acs.chemmater.8b04875 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Marbella, Lauren E.
Zekoll, Stefanie
Kasemchainan, Jitti
Emge, Steffen P.
Bruce, Peter G.
Grey, Clare P.
(7)Li NMR Chemical Shift Imaging To Detect Microstructural Growth of Lithium in All-Solid-State Batteries
title (7)Li NMR Chemical Shift Imaging To Detect Microstructural Growth of Lithium in All-Solid-State Batteries
title_full (7)Li NMR Chemical Shift Imaging To Detect Microstructural Growth of Lithium in All-Solid-State Batteries
title_fullStr (7)Li NMR Chemical Shift Imaging To Detect Microstructural Growth of Lithium in All-Solid-State Batteries
title_full_unstemmed (7)Li NMR Chemical Shift Imaging To Detect Microstructural Growth of Lithium in All-Solid-State Batteries
title_short (7)Li NMR Chemical Shift Imaging To Detect Microstructural Growth of Lithium in All-Solid-State Batteries
title_sort (7)li nmr chemical shift imaging to detect microstructural growth of lithium in all-solid-state batteries
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006347/
https://www.ncbi.nlm.nih.gov/pubmed/32051658
http://dx.doi.org/10.1021/acs.chemmater.8b04875
work_keys_str_mv AT marbellalaurene 7linmrchemicalshiftimagingtodetectmicrostructuralgrowthoflithiuminallsolidstatebatteries
AT zekollstefanie 7linmrchemicalshiftimagingtodetectmicrostructuralgrowthoflithiuminallsolidstatebatteries
AT kasemchainanjitti 7linmrchemicalshiftimagingtodetectmicrostructuralgrowthoflithiuminallsolidstatebatteries
AT emgesteffenp 7linmrchemicalshiftimagingtodetectmicrostructuralgrowthoflithiuminallsolidstatebatteries
AT brucepeterg 7linmrchemicalshiftimagingtodetectmicrostructuralgrowthoflithiuminallsolidstatebatteries
AT greyclarep 7linmrchemicalshiftimagingtodetectmicrostructuralgrowthoflithiuminallsolidstatebatteries