Cargando…

Upregulation of the Coatomer Protein Complex Subunit beta 2 (COPB2) Gene Targets microRNA-335-3p in NCI-H1975 Lung Adenocarcinoma Cells to Promote Cell Proliferation and Migration

BACKGROUND: The coatomer protein complex subunit beta 2 (COPB2) gene is upregulated and promotes cell proliferation in some cancer cells. This study aimed to investigate the role of microRNA (miRNA) targeting by COPB2 gene expression in human lung adenocarcinoma cell lines, including NCI-H1975 cells...

Descripción completa

Detalles Bibliográficos
Autores principales: Pu, Xiaolin, Jiang, Hua, Li, Wei, Xu, Lin, Wang, Lin, Shu, Yongqian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006366/
https://www.ncbi.nlm.nih.gov/pubmed/32004259
http://dx.doi.org/10.12659/MSM.918382
Descripción
Sumario:BACKGROUND: The coatomer protein complex subunit beta 2 (COPB2) gene is upregulated and promotes cell proliferation in some cancer cells. This study aimed to investigate the role of microRNA (miRNA) targeting by COPB2 gene expression in human lung adenocarcinoma cell lines, including NCI-H1975 cells. MATERIAL/METHODS: COPB2 expression in normal human bronchial epithelial cells and lung adenocarcinoma cells was measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. NCI-H1975 human lung adenocarcinoma cells were transfected with short-interfering COPB2 (siCOPB2). Cell apoptosis and cell proliferation were evaluated by flow cytometry and Cell Counting Kit-8 (CCK-8) assays, respectively. The transwell assay evaluated cell migration. Targeting of miR-335-3p by COPB2 was predicted using TargetScan 7.2 and verified using a dual-luciferase reporter assay in NCI-H1975 cells. MiR-335-3p mimics were transfected into NCI-H1975 cells. The further functional analysis included detection of protein expression for cyclin D1, tissue inhibitor matrix metalloproteinase-1 (TIMP-1), matrix metallopeptidase 9 (MMP9), Bcl-2, and Bax, to verify the role of miR-335-3p targeting by COPB2 in lung adenocarcinoma cells. RESULTS: COPB2 was upregulated in lung adenocarcinoma cells and was a direct target of miR-335-3p mimics. COPB2 knockdown promoted cell apoptosis, inhibited cell migration and proliferation in NCI-H1975 cells. The effects of COPB2 knockdown on NCI-H1975 cells were increased by miR-335-3p mimics, which also further reduced the expression levels of cyclin D1, MMP9, and Bcl-2 and further increased TIMP-1 and Bax by siCOPB2. CONCLUSIONS: This study showed that COPB2 was the functional target of miR-335-3p in NCI-H1975 human adenocarcinoma cells.