Cargando…

Predicting material properties by integrating high-throughput experiments, high-throughput ab-initio calculations, and machine learning

High-throughput experiments (HTEs) have been powerful tools to obtain many materials data. However, HTEs often require expensive equipment. Although high-throughput ab-initio calculation (HTC) has the potential to make materials big data easier to collect, HTC does not represent the actual materials...

Descripción completa

Detalles Bibliográficos
Autores principales: Iwasaki, Yuma, Ishida, Masahiko, Shirane, Masayuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006745/
https://www.ncbi.nlm.nih.gov/pubmed/32082441
http://dx.doi.org/10.1080/14686996.2019.1707111
Descripción
Sumario:High-throughput experiments (HTEs) have been powerful tools to obtain many materials data. However, HTEs often require expensive equipment. Although high-throughput ab-initio calculation (HTC) has the potential to make materials big data easier to collect, HTC does not represent the actual materials data obtained by HTEs in many cases. Here we propose using a combination of simple HTEs, HTC, and machine learning to predict material properties. We demonstrate that our method enables accurate and rapid prediction of the Kerr rotation mapping of an Fe(x)Co(y)Ni(1-x-y) composition spread alloy. Our method has the potential to quickly predict the properties of many materials without a difficult and expensive HTE and thereby accelerate materials development.