Cargando…
Predicting material properties by integrating high-throughput experiments, high-throughput ab-initio calculations, and machine learning
High-throughput experiments (HTEs) have been powerful tools to obtain many materials data. However, HTEs often require expensive equipment. Although high-throughput ab-initio calculation (HTC) has the potential to make materials big data easier to collect, HTC does not represent the actual materials...
Autores principales: | Iwasaki, Yuma, Ishida, Masahiko, Shirane, Masayuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006745/ https://www.ncbi.nlm.nih.gov/pubmed/32082441 http://dx.doi.org/10.1080/14686996.2019.1707111 |
Ejemplares similares
-
High-throughput ab initio calculations on dielectric constant and band gap of non-oxide dielectrics
por: Lee, Miso, et al.
Publicado: (2018) -
High-throughput ab-initio dilute solute diffusion database
por: Wu, Henry, et al.
Publicado: (2016) -
High-throughput ab initio design of atomic interfaces using InterMatch
por: Gerber, Eli, et al.
Publicado: (2023) -
High throughput calculations for a dataset of bilayer materials
por: Barik, Ranjan Kumar, et al.
Publicado: (2023) -
(4)He Thermophysical Properties: New Ab Initio Calculations
por: Hurly, John J., et al.
Publicado: (2007)