Cargando…

A Noncanonical Chromophore Reveals Structural Rearrangements of the Light-Oxygen-Voltage Domain upon Photoactivation

[Image: see text] Light-oxygen-voltage (LOV) domains are increasingly used to engineer photoresponsive biological systems. While the photochemical cycle is well documented, the allosteric mechanism by which formation of a cysteinyl-flavin adduct leads to activation is unclear. Via replacement of fla...

Descripción completa

Detalles Bibliográficos
Autores principales: Kalvaitis, Mindaugas E., Johnson, Luke A., Mart, Robert J., Rizkallah, Pierre, Allemann, Rudolf K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007005/
https://www.ncbi.nlm.nih.gov/pubmed/31082213
http://dx.doi.org/10.1021/acs.biochem.9b00255
_version_ 1783495247883403264
author Kalvaitis, Mindaugas E.
Johnson, Luke A.
Mart, Robert J.
Rizkallah, Pierre
Allemann, Rudolf K.
author_facet Kalvaitis, Mindaugas E.
Johnson, Luke A.
Mart, Robert J.
Rizkallah, Pierre
Allemann, Rudolf K.
author_sort Kalvaitis, Mindaugas E.
collection PubMed
description [Image: see text] Light-oxygen-voltage (LOV) domains are increasingly used to engineer photoresponsive biological systems. While the photochemical cycle is well documented, the allosteric mechanism by which formation of a cysteinyl-flavin adduct leads to activation is unclear. Via replacement of flavin mononucleotide (FMN) with 5-deazaflavin mononucleotide (5dFMN) in the Aureochrome1a (Au1a) transcription factor from Ochromonas danica, a thermally stable cysteinyl-5dFMN adduct was generated. High-resolution crystal structures (<2 Å) under different illumination conditions with either FMN or 5dFMN chromophores reveal three conformations of the highly conserved glutamine 293. An allosteric hydrogen bond network linking the chromophore via Gln293 to the auxiliary A′α helix is observed. With FMN, a “flip” of the Gln293 side chain occurs between dark and lit states. 5dFMN cannot hydrogen bond through the C5 position and proved to be unable to support Au1a domain dimerization. Under blue light, the Gln293 side chain instead “swings” away in a conformation distal to the chromophore and not previously observed in existing LOV domain structures. Together, the multiple side chain conformations of Gln293 and functional analysis of 5dFMN provide new insight into the structural requirements for LOV domain activation.
format Online
Article
Text
id pubmed-7007005
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-70070052020-02-10 A Noncanonical Chromophore Reveals Structural Rearrangements of the Light-Oxygen-Voltage Domain upon Photoactivation Kalvaitis, Mindaugas E. Johnson, Luke A. Mart, Robert J. Rizkallah, Pierre Allemann, Rudolf K. Biochemistry [Image: see text] Light-oxygen-voltage (LOV) domains are increasingly used to engineer photoresponsive biological systems. While the photochemical cycle is well documented, the allosteric mechanism by which formation of a cysteinyl-flavin adduct leads to activation is unclear. Via replacement of flavin mononucleotide (FMN) with 5-deazaflavin mononucleotide (5dFMN) in the Aureochrome1a (Au1a) transcription factor from Ochromonas danica, a thermally stable cysteinyl-5dFMN adduct was generated. High-resolution crystal structures (<2 Å) under different illumination conditions with either FMN or 5dFMN chromophores reveal three conformations of the highly conserved glutamine 293. An allosteric hydrogen bond network linking the chromophore via Gln293 to the auxiliary A′α helix is observed. With FMN, a “flip” of the Gln293 side chain occurs between dark and lit states. 5dFMN cannot hydrogen bond through the C5 position and proved to be unable to support Au1a domain dimerization. Under blue light, the Gln293 side chain instead “swings” away in a conformation distal to the chromophore and not previously observed in existing LOV domain structures. Together, the multiple side chain conformations of Gln293 and functional analysis of 5dFMN provide new insight into the structural requirements for LOV domain activation. American Chemical Society 2019-05-13 2019-06-04 /pmc/articles/PMC7007005/ /pubmed/31082213 http://dx.doi.org/10.1021/acs.biochem.9b00255 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Kalvaitis, Mindaugas E.
Johnson, Luke A.
Mart, Robert J.
Rizkallah, Pierre
Allemann, Rudolf K.
A Noncanonical Chromophore Reveals Structural Rearrangements of the Light-Oxygen-Voltage Domain upon Photoactivation
title A Noncanonical Chromophore Reveals Structural Rearrangements of the Light-Oxygen-Voltage Domain upon Photoactivation
title_full A Noncanonical Chromophore Reveals Structural Rearrangements of the Light-Oxygen-Voltage Domain upon Photoactivation
title_fullStr A Noncanonical Chromophore Reveals Structural Rearrangements of the Light-Oxygen-Voltage Domain upon Photoactivation
title_full_unstemmed A Noncanonical Chromophore Reveals Structural Rearrangements of the Light-Oxygen-Voltage Domain upon Photoactivation
title_short A Noncanonical Chromophore Reveals Structural Rearrangements of the Light-Oxygen-Voltage Domain upon Photoactivation
title_sort noncanonical chromophore reveals structural rearrangements of the light-oxygen-voltage domain upon photoactivation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007005/
https://www.ncbi.nlm.nih.gov/pubmed/31082213
http://dx.doi.org/10.1021/acs.biochem.9b00255
work_keys_str_mv AT kalvaitismindaugase anoncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation
AT johnsonlukea anoncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation
AT martrobertj anoncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation
AT rizkallahpierre anoncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation
AT allemannrudolfk anoncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation
AT kalvaitismindaugase noncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation
AT johnsonlukea noncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation
AT martrobertj noncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation
AT rizkallahpierre noncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation
AT allemannrudolfk noncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation