Cargando…
A Noncanonical Chromophore Reveals Structural Rearrangements of the Light-Oxygen-Voltage Domain upon Photoactivation
[Image: see text] Light-oxygen-voltage (LOV) domains are increasingly used to engineer photoresponsive biological systems. While the photochemical cycle is well documented, the allosteric mechanism by which formation of a cysteinyl-flavin adduct leads to activation is unclear. Via replacement of fla...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007005/ https://www.ncbi.nlm.nih.gov/pubmed/31082213 http://dx.doi.org/10.1021/acs.biochem.9b00255 |
_version_ | 1783495247883403264 |
---|---|
author | Kalvaitis, Mindaugas E. Johnson, Luke A. Mart, Robert J. Rizkallah, Pierre Allemann, Rudolf K. |
author_facet | Kalvaitis, Mindaugas E. Johnson, Luke A. Mart, Robert J. Rizkallah, Pierre Allemann, Rudolf K. |
author_sort | Kalvaitis, Mindaugas E. |
collection | PubMed |
description | [Image: see text] Light-oxygen-voltage (LOV) domains are increasingly used to engineer photoresponsive biological systems. While the photochemical cycle is well documented, the allosteric mechanism by which formation of a cysteinyl-flavin adduct leads to activation is unclear. Via replacement of flavin mononucleotide (FMN) with 5-deazaflavin mononucleotide (5dFMN) in the Aureochrome1a (Au1a) transcription factor from Ochromonas danica, a thermally stable cysteinyl-5dFMN adduct was generated. High-resolution crystal structures (<2 Å) under different illumination conditions with either FMN or 5dFMN chromophores reveal three conformations of the highly conserved glutamine 293. An allosteric hydrogen bond network linking the chromophore via Gln293 to the auxiliary A′α helix is observed. With FMN, a “flip” of the Gln293 side chain occurs between dark and lit states. 5dFMN cannot hydrogen bond through the C5 position and proved to be unable to support Au1a domain dimerization. Under blue light, the Gln293 side chain instead “swings” away in a conformation distal to the chromophore and not previously observed in existing LOV domain structures. Together, the multiple side chain conformations of Gln293 and functional analysis of 5dFMN provide new insight into the structural requirements for LOV domain activation. |
format | Online Article Text |
id | pubmed-7007005 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-70070052020-02-10 A Noncanonical Chromophore Reveals Structural Rearrangements of the Light-Oxygen-Voltage Domain upon Photoactivation Kalvaitis, Mindaugas E. Johnson, Luke A. Mart, Robert J. Rizkallah, Pierre Allemann, Rudolf K. Biochemistry [Image: see text] Light-oxygen-voltage (LOV) domains are increasingly used to engineer photoresponsive biological systems. While the photochemical cycle is well documented, the allosteric mechanism by which formation of a cysteinyl-flavin adduct leads to activation is unclear. Via replacement of flavin mononucleotide (FMN) with 5-deazaflavin mononucleotide (5dFMN) in the Aureochrome1a (Au1a) transcription factor from Ochromonas danica, a thermally stable cysteinyl-5dFMN adduct was generated. High-resolution crystal structures (<2 Å) under different illumination conditions with either FMN or 5dFMN chromophores reveal three conformations of the highly conserved glutamine 293. An allosteric hydrogen bond network linking the chromophore via Gln293 to the auxiliary A′α helix is observed. With FMN, a “flip” of the Gln293 side chain occurs between dark and lit states. 5dFMN cannot hydrogen bond through the C5 position and proved to be unable to support Au1a domain dimerization. Under blue light, the Gln293 side chain instead “swings” away in a conformation distal to the chromophore and not previously observed in existing LOV domain structures. Together, the multiple side chain conformations of Gln293 and functional analysis of 5dFMN provide new insight into the structural requirements for LOV domain activation. American Chemical Society 2019-05-13 2019-06-04 /pmc/articles/PMC7007005/ /pubmed/31082213 http://dx.doi.org/10.1021/acs.biochem.9b00255 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Kalvaitis, Mindaugas E. Johnson, Luke A. Mart, Robert J. Rizkallah, Pierre Allemann, Rudolf K. A Noncanonical Chromophore Reveals Structural Rearrangements of the Light-Oxygen-Voltage Domain upon Photoactivation |
title | A Noncanonical Chromophore Reveals Structural Rearrangements
of the Light-Oxygen-Voltage Domain upon Photoactivation |
title_full | A Noncanonical Chromophore Reveals Structural Rearrangements
of the Light-Oxygen-Voltage Domain upon Photoactivation |
title_fullStr | A Noncanonical Chromophore Reveals Structural Rearrangements
of the Light-Oxygen-Voltage Domain upon Photoactivation |
title_full_unstemmed | A Noncanonical Chromophore Reveals Structural Rearrangements
of the Light-Oxygen-Voltage Domain upon Photoactivation |
title_short | A Noncanonical Chromophore Reveals Structural Rearrangements
of the Light-Oxygen-Voltage Domain upon Photoactivation |
title_sort | noncanonical chromophore reveals structural rearrangements
of the light-oxygen-voltage domain upon photoactivation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007005/ https://www.ncbi.nlm.nih.gov/pubmed/31082213 http://dx.doi.org/10.1021/acs.biochem.9b00255 |
work_keys_str_mv | AT kalvaitismindaugase anoncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation AT johnsonlukea anoncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation AT martrobertj anoncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation AT rizkallahpierre anoncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation AT allemannrudolfk anoncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation AT kalvaitismindaugase noncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation AT johnsonlukea noncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation AT martrobertj noncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation AT rizkallahpierre noncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation AT allemannrudolfk noncanonicalchromophorerevealsstructuralrearrangementsofthelightoxygenvoltagedomainuponphotoactivation |