Cargando…

Rich Polymorphism of a Metal–Organic Framework in Pressure–Temperature Space

[Image: see text] We present an in situ powder X-ray diffraction study on the phase stability and polymorphism of the metal–organic framework ZIF-4, Zn(imidazolate)(2), at simultaneous high pressure and high temperature, up to 8 GPa and 600 °C. The resulting pressure–temperature phase diagram reveal...

Descripción completa

Detalles Bibliográficos
Autores principales: Widmer, Remo N., Lampronti, Giulio I., Chibani, Siwar, Wilson, Craig W., Anzellini, Simone, Farsang, Stefan, Kleppe, Annette K., Casati, Nicola P. M., MacLeod, Simon G., Redfern, Simon A. T., Coudert, François-Xavier, Bennett, Thomas D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007208/
https://www.ncbi.nlm.nih.gov/pubmed/31117654
http://dx.doi.org/10.1021/jacs.9b03234
_version_ 1783495281919131648
author Widmer, Remo N.
Lampronti, Giulio I.
Chibani, Siwar
Wilson, Craig W.
Anzellini, Simone
Farsang, Stefan
Kleppe, Annette K.
Casati, Nicola P. M.
MacLeod, Simon G.
Redfern, Simon A. T.
Coudert, François-Xavier
Bennett, Thomas D.
author_facet Widmer, Remo N.
Lampronti, Giulio I.
Chibani, Siwar
Wilson, Craig W.
Anzellini, Simone
Farsang, Stefan
Kleppe, Annette K.
Casati, Nicola P. M.
MacLeod, Simon G.
Redfern, Simon A. T.
Coudert, François-Xavier
Bennett, Thomas D.
author_sort Widmer, Remo N.
collection PubMed
description [Image: see text] We present an in situ powder X-ray diffraction study on the phase stability and polymorphism of the metal–organic framework ZIF-4, Zn(imidazolate)(2), at simultaneous high pressure and high temperature, up to 8 GPa and 600 °C. The resulting pressure–temperature phase diagram reveals four, previously unknown, high-pressure–high-temperature ZIF phases. The crystal structures of two new phases—ZIF-4-cp-II and ZIF-hPT-II—were solved by powder diffraction methods. The total energy of ZIF-4-cp-II was evaluated using density functional theory calculations and was found to lie in between that of ZIF-4 and the most thermodynamically stable polymorph, ZIF-zni. ZIF-hPT-II was found to possess a doubly interpenetrated diamondoid topology and is isostructural with previously reported Cd(Imidazolate)(2) and Hg(Imidazolate)(2) phases. This phase exhibited extreme resistance to both temperature and pressure. The other two new phases could be assigned with a unit cell and space group, although their structures remain unknown. The pressure–temperature phase diagram of ZIF-4 is strikingly complicated when compared with that of the previously investigated, closely related ZIF-62 and demonstrates the ability to traverse complex energy landscapes of metal–organic systems using the combined application of pressure and temperature.
format Online
Article
Text
id pubmed-7007208
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-70072082020-02-10 Rich Polymorphism of a Metal–Organic Framework in Pressure–Temperature Space Widmer, Remo N. Lampronti, Giulio I. Chibani, Siwar Wilson, Craig W. Anzellini, Simone Farsang, Stefan Kleppe, Annette K. Casati, Nicola P. M. MacLeod, Simon G. Redfern, Simon A. T. Coudert, François-Xavier Bennett, Thomas D. J Am Chem Soc [Image: see text] We present an in situ powder X-ray diffraction study on the phase stability and polymorphism of the metal–organic framework ZIF-4, Zn(imidazolate)(2), at simultaneous high pressure and high temperature, up to 8 GPa and 600 °C. The resulting pressure–temperature phase diagram reveals four, previously unknown, high-pressure–high-temperature ZIF phases. The crystal structures of two new phases—ZIF-4-cp-II and ZIF-hPT-II—were solved by powder diffraction methods. The total energy of ZIF-4-cp-II was evaluated using density functional theory calculations and was found to lie in between that of ZIF-4 and the most thermodynamically stable polymorph, ZIF-zni. ZIF-hPT-II was found to possess a doubly interpenetrated diamondoid topology and is isostructural with previously reported Cd(Imidazolate)(2) and Hg(Imidazolate)(2) phases. This phase exhibited extreme resistance to both temperature and pressure. The other two new phases could be assigned with a unit cell and space group, although their structures remain unknown. The pressure–temperature phase diagram of ZIF-4 is strikingly complicated when compared with that of the previously investigated, closely related ZIF-62 and demonstrates the ability to traverse complex energy landscapes of metal–organic systems using the combined application of pressure and temperature. American Chemical Society 2019-05-22 2019-06-12 /pmc/articles/PMC7007208/ /pubmed/31117654 http://dx.doi.org/10.1021/jacs.9b03234 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Widmer, Remo N.
Lampronti, Giulio I.
Chibani, Siwar
Wilson, Craig W.
Anzellini, Simone
Farsang, Stefan
Kleppe, Annette K.
Casati, Nicola P. M.
MacLeod, Simon G.
Redfern, Simon A. T.
Coudert, François-Xavier
Bennett, Thomas D.
Rich Polymorphism of a Metal–Organic Framework in Pressure–Temperature Space
title Rich Polymorphism of a Metal–Organic Framework in Pressure–Temperature Space
title_full Rich Polymorphism of a Metal–Organic Framework in Pressure–Temperature Space
title_fullStr Rich Polymorphism of a Metal–Organic Framework in Pressure–Temperature Space
title_full_unstemmed Rich Polymorphism of a Metal–Organic Framework in Pressure–Temperature Space
title_short Rich Polymorphism of a Metal–Organic Framework in Pressure–Temperature Space
title_sort rich polymorphism of a metal–organic framework in pressure–temperature space
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007208/
https://www.ncbi.nlm.nih.gov/pubmed/31117654
http://dx.doi.org/10.1021/jacs.9b03234
work_keys_str_mv AT widmerremon richpolymorphismofametalorganicframeworkinpressuretemperaturespace
AT lamprontigiulioi richpolymorphismofametalorganicframeworkinpressuretemperaturespace
AT chibanisiwar richpolymorphismofametalorganicframeworkinpressuretemperaturespace
AT wilsoncraigw richpolymorphismofametalorganicframeworkinpressuretemperaturespace
AT anzellinisimone richpolymorphismofametalorganicframeworkinpressuretemperaturespace
AT farsangstefan richpolymorphismofametalorganicframeworkinpressuretemperaturespace
AT kleppeannettek richpolymorphismofametalorganicframeworkinpressuretemperaturespace
AT casatinicolapm richpolymorphismofametalorganicframeworkinpressuretemperaturespace
AT macleodsimong richpolymorphismofametalorganicframeworkinpressuretemperaturespace
AT redfernsimonat richpolymorphismofametalorganicframeworkinpressuretemperaturespace
AT coudertfrancoisxavier richpolymorphismofametalorganicframeworkinpressuretemperaturespace
AT bennettthomasd richpolymorphismofametalorganicframeworkinpressuretemperaturespace