Cargando…
Rich Polymorphism of a Metal–Organic Framework in Pressure–Temperature Space
[Image: see text] We present an in situ powder X-ray diffraction study on the phase stability and polymorphism of the metal–organic framework ZIF-4, Zn(imidazolate)(2), at simultaneous high pressure and high temperature, up to 8 GPa and 600 °C. The resulting pressure–temperature phase diagram reveal...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007208/ https://www.ncbi.nlm.nih.gov/pubmed/31117654 http://dx.doi.org/10.1021/jacs.9b03234 |
_version_ | 1783495281919131648 |
---|---|
author | Widmer, Remo N. Lampronti, Giulio I. Chibani, Siwar Wilson, Craig W. Anzellini, Simone Farsang, Stefan Kleppe, Annette K. Casati, Nicola P. M. MacLeod, Simon G. Redfern, Simon A. T. Coudert, François-Xavier Bennett, Thomas D. |
author_facet | Widmer, Remo N. Lampronti, Giulio I. Chibani, Siwar Wilson, Craig W. Anzellini, Simone Farsang, Stefan Kleppe, Annette K. Casati, Nicola P. M. MacLeod, Simon G. Redfern, Simon A. T. Coudert, François-Xavier Bennett, Thomas D. |
author_sort | Widmer, Remo N. |
collection | PubMed |
description | [Image: see text] We present an in situ powder X-ray diffraction study on the phase stability and polymorphism of the metal–organic framework ZIF-4, Zn(imidazolate)(2), at simultaneous high pressure and high temperature, up to 8 GPa and 600 °C. The resulting pressure–temperature phase diagram reveals four, previously unknown, high-pressure–high-temperature ZIF phases. The crystal structures of two new phases—ZIF-4-cp-II and ZIF-hPT-II—were solved by powder diffraction methods. The total energy of ZIF-4-cp-II was evaluated using density functional theory calculations and was found to lie in between that of ZIF-4 and the most thermodynamically stable polymorph, ZIF-zni. ZIF-hPT-II was found to possess a doubly interpenetrated diamondoid topology and is isostructural with previously reported Cd(Imidazolate)(2) and Hg(Imidazolate)(2) phases. This phase exhibited extreme resistance to both temperature and pressure. The other two new phases could be assigned with a unit cell and space group, although their structures remain unknown. The pressure–temperature phase diagram of ZIF-4 is strikingly complicated when compared with that of the previously investigated, closely related ZIF-62 and demonstrates the ability to traverse complex energy landscapes of metal–organic systems using the combined application of pressure and temperature. |
format | Online Article Text |
id | pubmed-7007208 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-70072082020-02-10 Rich Polymorphism of a Metal–Organic Framework in Pressure–Temperature Space Widmer, Remo N. Lampronti, Giulio I. Chibani, Siwar Wilson, Craig W. Anzellini, Simone Farsang, Stefan Kleppe, Annette K. Casati, Nicola P. M. MacLeod, Simon G. Redfern, Simon A. T. Coudert, François-Xavier Bennett, Thomas D. J Am Chem Soc [Image: see text] We present an in situ powder X-ray diffraction study on the phase stability and polymorphism of the metal–organic framework ZIF-4, Zn(imidazolate)(2), at simultaneous high pressure and high temperature, up to 8 GPa and 600 °C. The resulting pressure–temperature phase diagram reveals four, previously unknown, high-pressure–high-temperature ZIF phases. The crystal structures of two new phases—ZIF-4-cp-II and ZIF-hPT-II—were solved by powder diffraction methods. The total energy of ZIF-4-cp-II was evaluated using density functional theory calculations and was found to lie in between that of ZIF-4 and the most thermodynamically stable polymorph, ZIF-zni. ZIF-hPT-II was found to possess a doubly interpenetrated diamondoid topology and is isostructural with previously reported Cd(Imidazolate)(2) and Hg(Imidazolate)(2) phases. This phase exhibited extreme resistance to both temperature and pressure. The other two new phases could be assigned with a unit cell and space group, although their structures remain unknown. The pressure–temperature phase diagram of ZIF-4 is strikingly complicated when compared with that of the previously investigated, closely related ZIF-62 and demonstrates the ability to traverse complex energy landscapes of metal–organic systems using the combined application of pressure and temperature. American Chemical Society 2019-05-22 2019-06-12 /pmc/articles/PMC7007208/ /pubmed/31117654 http://dx.doi.org/10.1021/jacs.9b03234 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Widmer, Remo N. Lampronti, Giulio I. Chibani, Siwar Wilson, Craig W. Anzellini, Simone Farsang, Stefan Kleppe, Annette K. Casati, Nicola P. M. MacLeod, Simon G. Redfern, Simon A. T. Coudert, François-Xavier Bennett, Thomas D. Rich Polymorphism of a Metal–Organic Framework in Pressure–Temperature Space |
title | Rich
Polymorphism of a Metal–Organic Framework
in Pressure–Temperature Space |
title_full | Rich
Polymorphism of a Metal–Organic Framework
in Pressure–Temperature Space |
title_fullStr | Rich
Polymorphism of a Metal–Organic Framework
in Pressure–Temperature Space |
title_full_unstemmed | Rich
Polymorphism of a Metal–Organic Framework
in Pressure–Temperature Space |
title_short | Rich
Polymorphism of a Metal–Organic Framework
in Pressure–Temperature Space |
title_sort | rich
polymorphism of a metal–organic framework
in pressure–temperature space |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007208/ https://www.ncbi.nlm.nih.gov/pubmed/31117654 http://dx.doi.org/10.1021/jacs.9b03234 |
work_keys_str_mv | AT widmerremon richpolymorphismofametalorganicframeworkinpressuretemperaturespace AT lamprontigiulioi richpolymorphismofametalorganicframeworkinpressuretemperaturespace AT chibanisiwar richpolymorphismofametalorganicframeworkinpressuretemperaturespace AT wilsoncraigw richpolymorphismofametalorganicframeworkinpressuretemperaturespace AT anzellinisimone richpolymorphismofametalorganicframeworkinpressuretemperaturespace AT farsangstefan richpolymorphismofametalorganicframeworkinpressuretemperaturespace AT kleppeannettek richpolymorphismofametalorganicframeworkinpressuretemperaturespace AT casatinicolapm richpolymorphismofametalorganicframeworkinpressuretemperaturespace AT macleodsimong richpolymorphismofametalorganicframeworkinpressuretemperaturespace AT redfernsimonat richpolymorphismofametalorganicframeworkinpressuretemperaturespace AT coudertfrancoisxavier richpolymorphismofametalorganicframeworkinpressuretemperaturespace AT bennettthomasd richpolymorphismofametalorganicframeworkinpressuretemperaturespace |