Cargando…

Phrenic-specific transcriptional programs shape respiratory motor output

The precise pattern of motor neuron (MN) activation is essential for the execution of motor actions; however, the molecular mechanisms that give rise to specific patterns of MN activity are largely unknown. Phrenic MNs integrate multiple inputs to mediate inspiratory activity during breathing and ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Vagnozzi, Alicia N, Garg, Kiran, Dewitz, Carola, Moore, Matthew T, Cregg, Jared M, Jeannotte, Lucie, Zampieri, Niccolò, Landmesser, Lynn T, Philippidou, Polyxeni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007220/
https://www.ncbi.nlm.nih.gov/pubmed/31944180
http://dx.doi.org/10.7554/eLife.52859
_version_ 1783495284465074176
author Vagnozzi, Alicia N
Garg, Kiran
Dewitz, Carola
Moore, Matthew T
Cregg, Jared M
Jeannotte, Lucie
Zampieri, Niccolò
Landmesser, Lynn T
Philippidou, Polyxeni
author_facet Vagnozzi, Alicia N
Garg, Kiran
Dewitz, Carola
Moore, Matthew T
Cregg, Jared M
Jeannotte, Lucie
Zampieri, Niccolò
Landmesser, Lynn T
Philippidou, Polyxeni
author_sort Vagnozzi, Alicia N
collection PubMed
description The precise pattern of motor neuron (MN) activation is essential for the execution of motor actions; however, the molecular mechanisms that give rise to specific patterns of MN activity are largely unknown. Phrenic MNs integrate multiple inputs to mediate inspiratory activity during breathing and are constrained to fire in a pattern that drives efficient diaphragm contraction. We show that Hox5 transcription factors shape phrenic MN output by connecting phrenic MNs to inhibitory premotor neurons. Hox5 genes establish phrenic MN organization and dendritic topography through the regulation of phrenic-specific cell adhesion programs. In the absence of Hox5 genes, phrenic MN firing becomes asynchronous and erratic due to loss of phrenic MN inhibition. Strikingly, mice lacking Hox5 genes in MNs exhibit abnormal respiratory behavior throughout their lifetime. Our findings support a model where MN-intrinsic transcriptional programs shape the pattern of motor output by orchestrating distinct aspects of MN connectivity.
format Online
Article
Text
id pubmed-7007220
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-70072202020-02-10 Phrenic-specific transcriptional programs shape respiratory motor output Vagnozzi, Alicia N Garg, Kiran Dewitz, Carola Moore, Matthew T Cregg, Jared M Jeannotte, Lucie Zampieri, Niccolò Landmesser, Lynn T Philippidou, Polyxeni eLife Neuroscience The precise pattern of motor neuron (MN) activation is essential for the execution of motor actions; however, the molecular mechanisms that give rise to specific patterns of MN activity are largely unknown. Phrenic MNs integrate multiple inputs to mediate inspiratory activity during breathing and are constrained to fire in a pattern that drives efficient diaphragm contraction. We show that Hox5 transcription factors shape phrenic MN output by connecting phrenic MNs to inhibitory premotor neurons. Hox5 genes establish phrenic MN organization and dendritic topography through the regulation of phrenic-specific cell adhesion programs. In the absence of Hox5 genes, phrenic MN firing becomes asynchronous and erratic due to loss of phrenic MN inhibition. Strikingly, mice lacking Hox5 genes in MNs exhibit abnormal respiratory behavior throughout their lifetime. Our findings support a model where MN-intrinsic transcriptional programs shape the pattern of motor output by orchestrating distinct aspects of MN connectivity. eLife Sciences Publications, Ltd 2020-01-16 /pmc/articles/PMC7007220/ /pubmed/31944180 http://dx.doi.org/10.7554/eLife.52859 Text en © 2020, Vagnozzi et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Neuroscience
Vagnozzi, Alicia N
Garg, Kiran
Dewitz, Carola
Moore, Matthew T
Cregg, Jared M
Jeannotte, Lucie
Zampieri, Niccolò
Landmesser, Lynn T
Philippidou, Polyxeni
Phrenic-specific transcriptional programs shape respiratory motor output
title Phrenic-specific transcriptional programs shape respiratory motor output
title_full Phrenic-specific transcriptional programs shape respiratory motor output
title_fullStr Phrenic-specific transcriptional programs shape respiratory motor output
title_full_unstemmed Phrenic-specific transcriptional programs shape respiratory motor output
title_short Phrenic-specific transcriptional programs shape respiratory motor output
title_sort phrenic-specific transcriptional programs shape respiratory motor output
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007220/
https://www.ncbi.nlm.nih.gov/pubmed/31944180
http://dx.doi.org/10.7554/eLife.52859
work_keys_str_mv AT vagnozzialician phrenicspecifictranscriptionalprogramsshaperespiratorymotoroutput
AT gargkiran phrenicspecifictranscriptionalprogramsshaperespiratorymotoroutput
AT dewitzcarola phrenicspecifictranscriptionalprogramsshaperespiratorymotoroutput
AT moorematthewt phrenicspecifictranscriptionalprogramsshaperespiratorymotoroutput
AT creggjaredm phrenicspecifictranscriptionalprogramsshaperespiratorymotoroutput
AT jeannottelucie phrenicspecifictranscriptionalprogramsshaperespiratorymotoroutput
AT zampieriniccolo phrenicspecifictranscriptionalprogramsshaperespiratorymotoroutput
AT landmesserlynnt phrenicspecifictranscriptionalprogramsshaperespiratorymotoroutput
AT philippidoupolyxeni phrenicspecifictranscriptionalprogramsshaperespiratorymotoroutput