Cargando…
Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals
Genome-wide association analyses have uncovered multiple genomic regions associated with T2D, but identification of the causal variants at these remains a challenge. There is growing interest in the potential of deep learning models - which predict epigenome features from DNA sequence - to support i...
Autores principales: | Wesolowska-Andersen, Agata, Zhuo Yu, Grace, Nylander, Vibe, Abaitua, Fernando, Thurner, Matthias, Torres, Jason M, Mahajan, Anubha, Gloyn, Anna L, McCarthy, Mark I |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007221/ https://www.ncbi.nlm.nih.gov/pubmed/31985400 http://dx.doi.org/10.7554/eLife.51503 |
Ejemplares similares
-
Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci
por: Thurner, Matthias, et al.
Publicado: (2018) -
Analysis of Differentiation Protocols Defines a Common Pancreatic Progenitor Molecular Signature and Guides Refinement of Endocrine Differentiation
por: Wesolowska-Andersen, Agata, et al.
Publicado: (2019) -
A Multi-omic Integrative Scheme Characterizes Tissues of Action at Loci Associated with Type 2 Diabetes
por: Torres, Jason M., et al.
Publicado: (2020) -
Inferring causal genes at type 2 diabetes GWAS loci through chromosome interactions in islet cells
por: Torres, Jason M., et al.
Publicado: (2023) -
Genes Associated with Pancreas Development and Function Maintain Open Chromatin in iPSCs Generated from Human Pancreatic Beta Cells
por: Thurner, Matthias, et al.
Publicado: (2017)