Cargando…

Solvation of Na(–) in the Sodide Solution, LiNa·10MeNH(2)

[Image: see text] Alkalides, the alkali metals in their −1 oxidation state, represent some of the largest and most polarizable atomic species in condensed phases. This study determines the solvation environment around the sodide anion, Na(–), in a system of co-solvated Li(+). We present isotopically...

Descripción completa

Detalles Bibliográficos
Autores principales: Seel, Andrew G., Holzmann, Nicole, Imberti, Silvia, Bernasconi, Leonardo, Edwards, Peter P., Cullen, Patrick L., Howard, Christopher A., Skipper, Neal T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007231/
https://www.ncbi.nlm.nih.gov/pubmed/31144816
http://dx.doi.org/10.1021/acs.jpcb.9b03792
_version_ 1783495287082319872
author Seel, Andrew G.
Holzmann, Nicole
Imberti, Silvia
Bernasconi, Leonardo
Edwards, Peter P.
Cullen, Patrick L.
Howard, Christopher A.
Skipper, Neal T.
author_facet Seel, Andrew G.
Holzmann, Nicole
Imberti, Silvia
Bernasconi, Leonardo
Edwards, Peter P.
Cullen, Patrick L.
Howard, Christopher A.
Skipper, Neal T.
author_sort Seel, Andrew G.
collection PubMed
description [Image: see text] Alkalides, the alkali metals in their −1 oxidation state, represent some of the largest and most polarizable atomic species in condensed phases. This study determines the solvation environment around the sodide anion, Na(–), in a system of co-solvated Li(+). We present isotopically varied total neutron scattering experiments alongside empirical potential structure refinement and ab initio molecular dynamics simulations for the alkali–alkalide system, LiNa·10MeNH(2). Both local coordination modes and the intermediate range liquid structure are determined, which demonstrate that distinct structural correlations between cation and anion in the liquid phase extend beyond 8.6 Å. Indeed, the local solvation around Na(–) is surprisingly well defined with strong solvent orientational order, in contrast to the classical description of alkalide anions not interacting with their environment. The ion-paired Li(MeNH(2))(4)(+)·Na(–) species appears to be the dominant alkali–alkalide environment in these liquids, whereby Li(+) and Na(–) share a MeNH(2) molecule through the amine group in their primary solvation spheres.
format Online
Article
Text
id pubmed-7007231
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-70072312020-02-10 Solvation of Na(–) in the Sodide Solution, LiNa·10MeNH(2) Seel, Andrew G. Holzmann, Nicole Imberti, Silvia Bernasconi, Leonardo Edwards, Peter P. Cullen, Patrick L. Howard, Christopher A. Skipper, Neal T. J Phys Chem B [Image: see text] Alkalides, the alkali metals in their −1 oxidation state, represent some of the largest and most polarizable atomic species in condensed phases. This study determines the solvation environment around the sodide anion, Na(–), in a system of co-solvated Li(+). We present isotopically varied total neutron scattering experiments alongside empirical potential structure refinement and ab initio molecular dynamics simulations for the alkali–alkalide system, LiNa·10MeNH(2). Both local coordination modes and the intermediate range liquid structure are determined, which demonstrate that distinct structural correlations between cation and anion in the liquid phase extend beyond 8.6 Å. Indeed, the local solvation around Na(–) is surprisingly well defined with strong solvent orientational order, in contrast to the classical description of alkalide anions not interacting with their environment. The ion-paired Li(MeNH(2))(4)(+)·Na(–) species appears to be the dominant alkali–alkalide environment in these liquids, whereby Li(+) and Na(–) share a MeNH(2) molecule through the amine group in their primary solvation spheres. American Chemical Society 2019-05-30 2019-06-27 /pmc/articles/PMC7007231/ /pubmed/31144816 http://dx.doi.org/10.1021/acs.jpcb.9b03792 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Seel, Andrew G.
Holzmann, Nicole
Imberti, Silvia
Bernasconi, Leonardo
Edwards, Peter P.
Cullen, Patrick L.
Howard, Christopher A.
Skipper, Neal T.
Solvation of Na(–) in the Sodide Solution, LiNa·10MeNH(2)
title Solvation of Na(–) in the Sodide Solution, LiNa·10MeNH(2)
title_full Solvation of Na(–) in the Sodide Solution, LiNa·10MeNH(2)
title_fullStr Solvation of Na(–) in the Sodide Solution, LiNa·10MeNH(2)
title_full_unstemmed Solvation of Na(–) in the Sodide Solution, LiNa·10MeNH(2)
title_short Solvation of Na(–) in the Sodide Solution, LiNa·10MeNH(2)
title_sort solvation of na(–) in the sodide solution, lina·10menh(2)
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007231/
https://www.ncbi.nlm.nih.gov/pubmed/31144816
http://dx.doi.org/10.1021/acs.jpcb.9b03792
work_keys_str_mv AT seelandrewg solvationofnainthesodidesolutionlina10menh2
AT holzmannnicole solvationofnainthesodidesolutionlina10menh2
AT imbertisilvia solvationofnainthesodidesolutionlina10menh2
AT bernasconileonardo solvationofnainthesodidesolutionlina10menh2
AT edwardspeterp solvationofnainthesodidesolutionlina10menh2
AT cullenpatrickl solvationofnainthesodidesolutionlina10menh2
AT howardchristophera solvationofnainthesodidesolutionlina10menh2
AT skippernealt solvationofnainthesodidesolutionlina10menh2