Cargando…
Modular Design via Multiple Anion Chemistry of the High Mobility van der Waals Semiconductor Bi(4)O(4)SeCl(2)
[Image: see text] Making new van der Waals materials with electronic or magnetic functionality is a chemical design challenge for the development of two-dimensional nanoelectronic and energy conversion devices. We present the synthesis and properties of the van der Waals material Bi(4)O(4)SeCl(2), w...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007234/ https://www.ncbi.nlm.nih.gov/pubmed/31825213 http://dx.doi.org/10.1021/jacs.9b09411 |
_version_ | 1783495287780671488 |
---|---|
author | Gibson, Quinn D. Manning, Troy D. Zanella, Marco Zhao, Tianqi Murgatroyd, Philip A. E. Robertson, Craig M. Jones, Leanne A. H. McBride, Fiona Raval, Rasmita Cora, Furio Slater, Ben Claridge, John B. Dhanak, Vin R. Dyer, Matthew S. Alaria, Jonathan Rosseinsky, Matthew J. |
author_facet | Gibson, Quinn D. Manning, Troy D. Zanella, Marco Zhao, Tianqi Murgatroyd, Philip A. E. Robertson, Craig M. Jones, Leanne A. H. McBride, Fiona Raval, Rasmita Cora, Furio Slater, Ben Claridge, John B. Dhanak, Vin R. Dyer, Matthew S. Alaria, Jonathan Rosseinsky, Matthew J. |
author_sort | Gibson, Quinn D. |
collection | PubMed |
description | [Image: see text] Making new van der Waals materials with electronic or magnetic functionality is a chemical design challenge for the development of two-dimensional nanoelectronic and energy conversion devices. We present the synthesis and properties of the van der Waals material Bi(4)O(4)SeCl(2), which is a 1:1 superlattice of the structural units present in the van der Waals insulator BiOCl and the three-dimensionally connected semiconductor Bi(2)O(2)Se. The presence of three anions gives the new structure both the bridging selenide anion sites that connect pairs of Bi(2)O(2) layers in Bi(2)O(2)Se and the terminal chloride sites that produce the van der Waals gap in BiOCl. This retains the electronic properties of Bi(2)O(2)Se while reducing the dimensionality of the bonding network connecting the Bi(2)O(2)Se units to allow exfoliation of Bi(4)O(4)SeCl(2) to 1.4 nm height. The superlattice structure is stabilized by the configurational entropy of anion disorder across the terminal and bridging sites. The reduction in connective dimensionality with retention of electronic functionality stems from the expanded anion compositional diversity. |
format | Online Article Text |
id | pubmed-7007234 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-70072342020-02-10 Modular Design via Multiple Anion Chemistry of the High Mobility van der Waals Semiconductor Bi(4)O(4)SeCl(2) Gibson, Quinn D. Manning, Troy D. Zanella, Marco Zhao, Tianqi Murgatroyd, Philip A. E. Robertson, Craig M. Jones, Leanne A. H. McBride, Fiona Raval, Rasmita Cora, Furio Slater, Ben Claridge, John B. Dhanak, Vin R. Dyer, Matthew S. Alaria, Jonathan Rosseinsky, Matthew J. J Am Chem Soc [Image: see text] Making new van der Waals materials with electronic or magnetic functionality is a chemical design challenge for the development of two-dimensional nanoelectronic and energy conversion devices. We present the synthesis and properties of the van der Waals material Bi(4)O(4)SeCl(2), which is a 1:1 superlattice of the structural units present in the van der Waals insulator BiOCl and the three-dimensionally connected semiconductor Bi(2)O(2)Se. The presence of three anions gives the new structure both the bridging selenide anion sites that connect pairs of Bi(2)O(2) layers in Bi(2)O(2)Se and the terminal chloride sites that produce the van der Waals gap in BiOCl. This retains the electronic properties of Bi(2)O(2)Se while reducing the dimensionality of the bonding network connecting the Bi(2)O(2)Se units to allow exfoliation of Bi(4)O(4)SeCl(2) to 1.4 nm height. The superlattice structure is stabilized by the configurational entropy of anion disorder across the terminal and bridging sites. The reduction in connective dimensionality with retention of electronic functionality stems from the expanded anion compositional diversity. American Chemical Society 2019-12-11 2020-01-15 /pmc/articles/PMC7007234/ /pubmed/31825213 http://dx.doi.org/10.1021/jacs.9b09411 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Gibson, Quinn D. Manning, Troy D. Zanella, Marco Zhao, Tianqi Murgatroyd, Philip A. E. Robertson, Craig M. Jones, Leanne A. H. McBride, Fiona Raval, Rasmita Cora, Furio Slater, Ben Claridge, John B. Dhanak, Vin R. Dyer, Matthew S. Alaria, Jonathan Rosseinsky, Matthew J. Modular Design via Multiple Anion Chemistry of the High Mobility van der Waals Semiconductor Bi(4)O(4)SeCl(2) |
title | Modular
Design via Multiple Anion Chemistry of the
High Mobility van der Waals Semiconductor Bi(4)O(4)SeCl(2) |
title_full | Modular
Design via Multiple Anion Chemistry of the
High Mobility van der Waals Semiconductor Bi(4)O(4)SeCl(2) |
title_fullStr | Modular
Design via Multiple Anion Chemistry of the
High Mobility van der Waals Semiconductor Bi(4)O(4)SeCl(2) |
title_full_unstemmed | Modular
Design via Multiple Anion Chemistry of the
High Mobility van der Waals Semiconductor Bi(4)O(4)SeCl(2) |
title_short | Modular
Design via Multiple Anion Chemistry of the
High Mobility van der Waals Semiconductor Bi(4)O(4)SeCl(2) |
title_sort | modular
design via multiple anion chemistry of the
high mobility van der waals semiconductor bi(4)o(4)secl(2) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007234/ https://www.ncbi.nlm.nih.gov/pubmed/31825213 http://dx.doi.org/10.1021/jacs.9b09411 |
work_keys_str_mv | AT gibsonquinnd modulardesignviamultipleanionchemistryofthehighmobilityvanderwaalssemiconductorbi4o4secl2 AT manningtroyd modulardesignviamultipleanionchemistryofthehighmobilityvanderwaalssemiconductorbi4o4secl2 AT zanellamarco modulardesignviamultipleanionchemistryofthehighmobilityvanderwaalssemiconductorbi4o4secl2 AT zhaotianqi modulardesignviamultipleanionchemistryofthehighmobilityvanderwaalssemiconductorbi4o4secl2 AT murgatroydphilipae modulardesignviamultipleanionchemistryofthehighmobilityvanderwaalssemiconductorbi4o4secl2 AT robertsoncraigm modulardesignviamultipleanionchemistryofthehighmobilityvanderwaalssemiconductorbi4o4secl2 AT jonesleanneah modulardesignviamultipleanionchemistryofthehighmobilityvanderwaalssemiconductorbi4o4secl2 AT mcbridefiona modulardesignviamultipleanionchemistryofthehighmobilityvanderwaalssemiconductorbi4o4secl2 AT ravalrasmita modulardesignviamultipleanionchemistryofthehighmobilityvanderwaalssemiconductorbi4o4secl2 AT corafurio modulardesignviamultipleanionchemistryofthehighmobilityvanderwaalssemiconductorbi4o4secl2 AT slaterben modulardesignviamultipleanionchemistryofthehighmobilityvanderwaalssemiconductorbi4o4secl2 AT claridgejohnb modulardesignviamultipleanionchemistryofthehighmobilityvanderwaalssemiconductorbi4o4secl2 AT dhanakvinr modulardesignviamultipleanionchemistryofthehighmobilityvanderwaalssemiconductorbi4o4secl2 AT dyermatthews modulardesignviamultipleanionchemistryofthehighmobilityvanderwaalssemiconductorbi4o4secl2 AT alariajonathan modulardesignviamultipleanionchemistryofthehighmobilityvanderwaalssemiconductorbi4o4secl2 AT rosseinskymatthewj modulardesignviamultipleanionchemistryofthehighmobilityvanderwaalssemiconductorbi4o4secl2 |