Cargando…
Imaging methods used in the assessment of environmental disease networks: a brief review for clinicians
BACKGROUND: Across the globe, diseases secondary to environmental exposures have been described, and it was also found that existing diseases have been modified by exposure to environmental chemicals or an environmental factor that has been found in their pathogenesis. The Institute of Medicine has...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007482/ https://www.ncbi.nlm.nih.gov/pubmed/32034587 http://dx.doi.org/10.1186/s13244-019-0814-7 |
Sumario: | BACKGROUND: Across the globe, diseases secondary to environmental exposures have been described, and it was also found that existing diseases have been modified by exposure to environmental chemicals or an environmental factor that has been found in their pathogenesis. The Institute of Medicine has shared a permanent concern related to the nations environmental health capacity since 1988. MAIN BODY: Contemporary imaging methods in the last 15 years started reporting alterations in different human systems such as the central nervous system, cardiovascular system and pulmonary system among others; evidence suggests the existence of a human environmental disease network. The primary anatomic regions, affected by environmental diseases, recently assessed with imaging methods include Brain (lead exposure, cerebral stroke, pesticide neurotoxicity), uses MRI, DTI, carotid ultrasonography and MRS; Lungs (smoke inhalation, organophosphates poisoning) are mainly assessed with radiography; Gastrointestinal system (chronic inflammatory bowel disease), recent studies have reported the use of aortic ultrasound; Heart (myocardial infarction), its link to environmental diseased has been proved with carotid ultrasound; and Arteries (artery hypertension), the impairment of aortic mechanical properties has been revealed with the use of aortic and brachial ultrasound. CONCLUSIONS: Environmental epidemiology has revealed that several organs and systems in the human body are targets of air pollutants. Current imaging methods that can assess the deleterious effects of pollutants includes a whole spectrum: radiography, US, CT and MRI. Future studies will help to reveal additional links among environmental disease networks. |
---|