Cargando…
Clinical Annotation Research Kit (CLARK): Computable Phenotyping Using Machine Learning
Computable phenotypes are algorithms that translate clinical features into code that can be run against electronic health record (EHR) data to define patient cohorts. However, computable phenotypes that only make use of structured EHR data do not capture the full richness of a patient’s medical reco...
Autores principales: | Pfaff, Emily R, Crosskey, Miles, Morton, Kenneth, Krishnamurthy, Ashok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007592/ https://www.ncbi.nlm.nih.gov/pubmed/32012059 http://dx.doi.org/10.2196/16042 |
Ejemplares similares
-
HOPES: An Integrative Digital Phenotyping Platform for Data Collection, Monitoring, and Machine Learning
por: Wang, Xuancong, et al.
Publicado: (2021) -
The myth of generalisability in clinical research and machine learning in health care
por: Futoma, Joseph, et al.
Publicado: (2020) -
Functional and Process Model on Big Data, Machine Learning, and
Digital Phenotyping in Clinical Psychiatry
por: Annamalai, Arunkumar
Publicado: (2022) -
Utilizing Consumer Technology (Apple’s ResearchKit) for Medical Studies by Patients and Researchers: Proof of Concept of the Novel Platform REach
por: van Gelder, Marleen MHJ, et al.
Publicado: (2018) -
Why machine learning (ML) has failed physical activity research and how we can improve
por: Fuller, Daniel, et al.
Publicado: (2022)