Cargando…
Segmentation of roots in soil with U-Net
BACKGROUND: Plant root research can provide a way to attain stress-tolerant crops that produce greater yield in a diverse array of conditions. Phenotyping roots in soil is often challenging due to the roots being difficult to access and the use of time consuming manual methods. Rhizotrons allow visu...
Autores principales: | Smith, Abraham George, Petersen, Jens, Selvan, Raghavendra, Rasmussen, Camilla Ruø |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007677/ https://www.ncbi.nlm.nih.gov/pubmed/32055251 http://dx.doi.org/10.1186/s13007-020-0563-0 |
Ejemplares similares
-
Microscopy cell nuclei segmentation with enhanced U-Net
por: Long, Feixiao
Publicado: (2020) -
PyConvU-Net: a lightweight and multiscale network for biomedical image segmentation
por: Li, Changyong, et al.
Publicado: (2021) -
Semantic segmentation of plant roots from RGB (mini-) rhizotron images—generalisation potential and false positives of established methods and advanced deep-learning models
por: Baykalov, Pavel, et al.
Publicado: (2023) -
Soybean Seedling Root Segmentation Using Improved U-Net Network
por: Xu, Xiuying, et al.
Publicado: (2022) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022)